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Dielectric response
• General problem: how does condensed matter

respond to the application of an external
pertubation?

• The EM wave is the external pertubation
• First approach: 

macroscopic / collective
• Second approach: 

microscopic /atomic / particle



Elementary phenomenology
• An electric field applied to a dielectric (no free 

charges) polarization
– By distortion
– By orientation



Dielectric response
• The applied field will in general have a space

and time dependence 𝐸 𝑟, 𝑡 which will affect
the response



Polarization and susceptibility
• Assume the response of matter to the applied field

is linear
o OK for not too high fields
o not OK for high power visible, EUV and X-ray lasers

• Apply linear response theory
• The electric dipole moment per unit volume is the 

polarization vector 𝑃
• Within the linear approximation introduce the 

electric susceptibility 𝜒

𝑃 = 𝜀!𝜒𝐸



Polarization and susceptibility

• Susceptibility is in general a tensor quantity; 
for simplicity here consider it a scalar. 

• We will study the scalar relations in the 
frequency domain

𝑃 𝜔 = 𝜀!𝜒 𝜔 𝐸 𝜔

• The dielectric response of matter determines
𝜒 𝜔



Dielectric displacement
• The dielectric displacement vector is defined as

𝐷 = 𝜀!𝐸 + 𝑃
• The direct proportionality between 𝐷 and 𝐸 is

written as
𝐷 = 𝜀!𝜀 𝐸

in which 𝜀 is the «dielectric constant», better
called permittivity or dielectric function

• Clearly
𝜀 = 1 + 𝜒



Dielectric displacement
• We will study dynamics (time dependent

properties)
• Susceptibility and dielectric function are «linear 

response functions» 
o Independent of the external field
o Describe system properties



The dielectric function
• 𝐷 𝜔 = 𝜀!𝜀 𝜔 𝐸 𝜔

o 𝜀 𝜔 has a real and imaginary part: 𝜀 𝜔 = 𝜀! 𝜔 + 𝑖𝜀" 𝜔
• The 𝜔 dependence of 𝜀 is determined by 

o The spectral range
o The corresponding type of excitations possible
o The specific properties of the system
Spectral range System Excitation processes

Micro - waves Molecules, free or in solution Molecular rotations

Infra - red Molecules, free or in solution Molecular vibrations

Infra - red Solids Phonons

Visibile – UV Atoms, molecules, solids Valence electron 
transitions

X - rays Atoms, molecules, solids Core level electron 
transitions



Dispersion and attenuation
• The dielectric function determines dispersion

and attenuation of an EM wave propagating in a 
polarizable medium
o a not too rarefied gas, a liquid, a solid or any other

state of aggregation (liquid crystal, plasma …)

• In vacuum the dispersion relation for EM waves
is

𝜔 = 𝑐𝑘

𝑐 is the speed of light in vacuo.



Dispersion and attenuation
• In the medium the dispersion relation is modified by the 

presence of the index of refraction 𝑛 𝜔 :

𝜔 =
𝑐

𝑛 𝜔 𝑘

• The index of refraction is

𝑛 𝜔 = 𝜀 𝜔 𝜇 𝜔

• Neglecting magnetic effects, 𝜇 𝜔 = 1

𝑛 𝜔 = 𝜀 𝜔
• 𝑛 𝜔 and 𝜀 𝜔 are macroscopic quantities which describe the 

interaction between the wave and the medium



Dispersion and attenuation
• Consider a plane wave propagating along x

𝐸 = 𝐸!𝑒" #$%&' ; 𝑘 𝜔 =
𝑛 𝜔 𝜔

𝑐
• 𝑛 𝜔 has a real and an imaginary part:

𝑛 𝜔 = 𝑛( 𝜔 + 𝑖𝑛) 𝜔
• Therefore, also the wave number has a real and 

imaginary part

𝑘 𝜔 =
𝑛( 𝜔 + 𝑖𝑛) 𝜔 𝜔

𝑐
= 𝑘( 𝜔 + 𝑖𝑘) 𝜔

𝑘( 𝜔 = *! & &
+ , 𝑘) 𝜔 = *" & &

+



Dispersion and attenuation
• 𝑘 𝜔 = *! & ,"*" & &

+
= 𝑘( 𝜔 + 𝑖𝑘) 𝜔

𝑘( 𝜔 = *! & &
+ , 𝑘) 𝜔 = *" & &

+
• The effect on the space propagation is

𝑒"#$ = 𝑒"#! & $ 𝑒%#" & $

• The space – time dependence of the wave is thus

𝐸 = 𝐸!𝑒" #! & $%&' 𝑒%#" & $

Propagation term Attenuation term



Dispersion and attenuation
• 𝐸 = 𝐸#𝑒$ %! & '(&) 𝑒(%" & '

• 𝑘" 𝜔 = "#$ "
% is the modified wave vector

o the phase velocity of the wave is 𝑣 = #
$! %

• 𝑘# 𝜔 = "#& "
% determines the attenuation of 

the wave as it traverses the medium
• 𝑛" 𝜔 : dispersion (modifies the speed of 

propagation)
o If the wave crosses the interface between two media 

it will change direction (refraction)

• 𝑛# 𝜔 : attenuation



The linear attenuation coefficient
• 𝑘) 𝜔 = %$" %

# : attenuation of the amplitude
• Since 𝐼 ∝ 𝐸 ) the attenuation coefficient of the 

intensity is
𝜇 = )&*" &

+

• If the total thickness traversed is 𝐿 the trasmitted
intensity 𝐼- is related to the incident one 𝐼! by

𝐼- = 𝐼!𝑒%./

• For an infinitesimal thickness

𝑑𝐼
𝐼
= −𝜇 𝑑𝑥

𝐼# 𝐼*

𝑑𝑥

𝑥𝐿



Relation between e (w) e n(w)

• 𝑛" 𝜔 + 𝑖𝑛# 𝜔 = 𝜀" 𝜔 + 𝑖𝜀# 𝜔
• Therefore:

o 𝜀( = 𝑛() − 𝑛)) , 𝜀) = 2𝑛(𝑛)

o 𝑛( =
0!, 0
)

, 𝑛) =
%0!, 0

)



Relation between e (w) e n(w) – weak interaction

• With 𝜀 = 1 + 𝜀1 + 𝑖𝜀) if 𝜀1 and 𝜀) ≪ 1: 
weak interaction limit (X-ray range) 

• In this limit
𝑛 = 1 + 𝜀1 + 𝑖𝜀) ≅ 1 + (

)𝜀
1 + 𝑖()𝜀)

• By convention, in the weak interaction limit the index of 
refraction is written as

𝑛 𝜔 = 1 − 𝛿 𝜔 + 𝑖𝛽 𝜔
𝛿 = −()𝜀

1, 𝛽 = (
)𝜀)

𝛿 and 𝛽 ≪ 1



Model dielectric functions
• Study two simple models for e (w) to illustrate 

general features of the dielectric response of 
matter
– Static (w = 0) distortion polarization
– Damped harmonic oscillator



Static distortion polarization
• A static electric field applied to a classical molecule

consisting of point charges: nuclei and electrons
• N charges 𝑞2 with mass 𝑚2, elastically bound to their

equilibrium position by a restoring force

−𝑚2𝜔2)𝑟2

in which 𝑟2 is the displacement of the 𝑗–th charge in the 
direction of the electric field
§ j = 1, … N
§ 𝜔+ is the resonance frequency of the 𝑗–th charge



Static distortion polarization
• The force acting on each charge is 𝑞$𝐸
• At equilibrium the displacement of each

charge is
𝑟$% =

&'
''('&

𝐸

• The induced dipole moment is 𝑝$ =
('
&

)'"'&
𝐸

• The total induced dipole moment is

3
$)"

*
&'&

''('&
𝐸



Static distortion polarization
• If the (number) density of molecules is r the 

static permittivity is

ε 𝜔 = 0 = 1 + *
+,
∑$)"* ('

&

)'"'&

o Always > 1
o Reasonable behaviour as a function of masses, 

density and resonance frequency
Øincreases with 𝜌
Ødecreases with 𝑚+ and 𝜔+



Damped harmonic oscillator: approximations
• In describing the effect of an EM on a collection of charges

which simulate the dielectric response of matter we make the 
following important approximations

1) Electric dipole approximation
o l » displacement of charges (neglect spatial variation of field): validity

depends on spectral range

2) Neglect motion of nuclei, consider only the contribution of 
electrons
o Justified in view of the great difference in mass

3) Neglect effect of force 𝑞 �⃗�×𝐵 due to magnetic field
o Justified since it is weaker than 𝑞𝐸

4) Neglect «radiation damping» due to emission of radiation
o An accelerated charge will always emit radiation: it will thus lose energy
o This effect is often considered as due to a «self – force». 



Damped harmonic oscillator
• First consider a single electron

o equilibrium position in the origin, 
displacement 𝑟 at time 𝑡

o charge−𝑒 and mass 𝑚
o elastically bound to its equilibrium position by a 

restoring force

−𝑚𝜔!-𝑟

Ø𝜔& is the resonant frequency (frequency of unforced
oscillations)

o subject to a dissipative viscous force

−𝑚𝛾
𝑑𝑟
𝑑𝑡



Damped harmonic oscillator

• The external electric field is written as
𝐸!𝑒"#$%

• The classical equation of motion is

−𝑒𝐸!𝑒"#$% −𝑚𝜔!&𝑟 − 𝑚𝛾
𝑑𝑟
𝑑𝑡

= 𝑚
𝑑&𝑟
𝑑𝑡&



Damped harmonic oscillator
• We seek a solution of the type 𝑟 𝑡 =
𝑅 𝜔 𝑒"#$%

• We easily find

𝑅 𝜔 =
𝑒

𝑚 𝜔& − 𝜔!& + 𝑖𝛾𝜔
𝐸!

• The induced dipole moment is

𝑝 𝜔 𝑒%"&' = '&

( $,&"$&"#)$
𝐸!𝑒%"&'



An atom as an ensemble of oscillators

• Model an atom as composed of Z electrons
arranged in M shells with equal characteristic
𝜔* , 𝛾*

• Each shell contains 𝑓* electrons, with

3
*+,

-

𝑓* = 𝑍



An atom as an ensemble of oscillators

• Following the single electron result, the 
atomic dipole moment induced by the 
external field is

𝑝 𝜔 = '&
(3
*+,

-
𝑓*

𝜔*& − 𝜔& − 𝑖𝛾*𝜔
𝐸!

• 𝑓* is known as the «oscillator strength»: it
determines the contribution of the 𝑗–th shell
to the dipole moment



A medium as an ensemble of polarizable atoms
• If the (number) density of identical atoms is r , we 

find

𝜀 𝜔 = 1 + #$!
%"&

+
'()

*
𝑓'

𝜔'+ − 𝜔+ − 𝑖𝛾'𝜔

• 𝜀) 𝜔 = 1 + #$!
%"&

∑'()* ,' -'!.-!

-'!.-!
!/ 0'-

!

• 𝜀+ 𝜔 = #$!
%"&

∑'()* ,'0'-

-'!.-!
!/ 0'-

!

• Kramers – Heisenberg or electric dipole dielectric
function



• A simple model which reproduces well the response of 
polarizable media in many frequency ranges

e
1
(w)=Re[e

r
(w)]

e
2
(w)=Im[e

r
(w)]

ww
j

Full width at half maximum
(FWHM) = gj

1

0

Dispersion

Attenuation

«Anomalous dispersion»

Near resonant behaviour

«Resonant absorption»



The dielectric
response of 

liquid water as a 
function of 
frequency

𝑛! 𝜔

𝜇 𝜔
= "&

, -" &

Jackson, Classical Electrodynamics
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