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Introduction
• Semi-classical theory of the interaction between 

radiation and hydrogen – like atoms.
• Semi-classical since 
– Radiation is treated as wave
– Atom is treated with quantum mechanics

• This approach is adequate since it can describe 
scattering and stimulated absorption and 
emission
– It cannot describe spontaneous emission

• Full quantum treatment requires quantization of 
EM field: more formal

• All phenomena occurring in hydrogen – like 
atoms are present in many electron ones
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A monochromatic photon beam
• Even within the semi-classical approach we 

will find that absorption and emission of 
energy between the beam and atoms occurs 
in quanta of magnitude ℏ𝜔, that is photons

• Even scattering will be describe in terms of 
photons.

• Therefore: extend definitions of intensity and 
flux in particle – like terms.
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Monochromatic radiation beam: definitions
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𝐼 = 𝑁ℏ𝜔 𝐹 =
𝑁
𝐴 ℏ𝜔 𝐹 = Φ ℏ𝜔

N = 
(Number of photons which cross a surface perpendicular to 𝑘 )/ 
(unit time)

I : Intensity = (Energy crossing the surface) / (unit time)

F : Photon flux =
(Number of photons crossing the surface) / (unit time × area)

F: Energy flux= (Energy crossing the surface) / (unit time × area)

𝑘



Interaction between a wave and an atom
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• The interaction is treated with time dependent
pertubation theory

• The unperturbed atom’s Hamiltonian is 𝐻!
• The pertubation is an EM wave and the time 

dependent interaction Hamiltonian is 𝐻" 𝑡
• The EM wave has a harmonic dependence on 

time, thus it is expressed by an Hermitian operator 
of the type

𝐻" 𝑡 = $𝐻𝑒#$% + $𝐻!𝑒&#$%

in which $𝐻 is an operator which does not depend
on time



Time dependent perturbation theory
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• The unpertubed atom has eigenstates labelled «a» 
and «b» with energies 𝐸'( and 𝐸)(

ØOften called the «initial» and «final» states

• It can be demonstrated that the transition probability
is maximized for two «resonant» conditions deriving
from different terms in 𝐻" 𝑡

a

b
ℏ𝜔 = 𝐸!" − 𝐸#"

a

b
ℏ𝜔 = 𝐸#" − 𝐸!"

,𝐻$𝑒%&'(

,𝐻𝑒&'(



Time dependent perturbation theory
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a

b
ℏ𝜔 = 𝐸!" − 𝐸#"

a

b
ℏ𝜔 = 𝐸#" − 𝐸!"

Stimulated absorption
• A photon of energy ℏ𝜔

is absorbed by the atom
• The atom makes a 

transition from a to b

Stimulated emission
• A photon of energy ℏ𝜔

is emitted from the 
atom

• The atom makes a 
transition from a to b

,𝐻$𝑒%&'(

,𝐻𝑒&'(



Fermi’s golden rule: transition to discrete states
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• For the case of absorption it can be demonstrated that, to 
first order in the pertubation, the transition probability per 
unit time for transitions between discrete levels a and b is

𝑊!# =
2𝜋
ℏ

,𝐻$!#
)𝛿 𝐸!" − 𝐸#" − ℏ𝜔

• ,𝐻$!# = 𝑏 ,𝐻$ 𝑎 is the matrix element of the perturbation
• The Dirac 𝛿 function is an expression of the conservation of 

energy
Ø Apparently unphysical: the probability is always 0 except at resonance

in which case it diverges. This will be resolved by introducing the 
concept of lifetime of the eigenstates



Fermi’s golden rule: transition to continuum states
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• For absorption with final states b in the continuum 
it can be shown that

𝑊)' =
2𝜋
ℏ

&𝐻*)'
+
𝜌 𝐸)(

with the condition that 𝐸)( = 𝐸'( + ℏ𝜔

• 𝜌 𝐸 is the density of states, such that the number
of states between 𝐸 and 𝐸 + 𝑑𝐸 is

𝑑𝑁 = 𝜌 𝐸 𝑑𝐸



The classical EM field
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𝐸 𝑟, 𝑡 = −𝛻𝜑(𝑟, 𝑡) −
𝜕𝐴(𝑟, 𝑡)
𝜕𝑡

𝐵 𝑟, 𝑡 = 𝛻×𝐴(𝑟, 𝑡).

;

• The EM field is described in terms of the vector and
scalar potentials 𝐴 𝑟, 𝑡 and 𝜙 𝑟, 𝑡

Electric field

Magnetic induction field



A plane monochromatic EM wave
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𝐴(𝑟, 𝑡) = ̂𝜀 𝐴 𝜔 𝑒!(#$%&')⃗) + 𝐴∗ 𝜔 𝑒%!(#$%&')⃗)

𝐸 𝑟, 𝑡 = −
𝜕𝐴(𝑟, 𝑡)
𝜕𝑡

= 𝑖𝜔 ̂𝜀 −𝐴 𝜔 𝑒!(#$%&')⃗) + 𝐴∗ 𝜔 𝑒%!(#$%&')⃗)

𝐵 𝑟, 𝑡 =
1
𝑐
6𝑘×𝐸 = 𝑖 𝑘× ̂𝜀 −𝐴 𝜔 𝑒!(#$%&')⃗) + 𝐴∗ 𝜔 𝑒%!(#$%&')⃗)

• The polarization is defined by ̂𝜀. 
It can be linear or circular

• 𝐴 𝜔 determines the amplitude and
intensity of the wave
Ø Actually it is real, but we keep the complex

notation for consistency



• The unpertubed Hamiltonian for a H – like atom with 
nucleus of charge Z is

𝐻" =
−𝑖ℏ𝛻

)

2𝑚 −
𝑍𝑒)

4𝜋𝜀" 𝑟

• It can be proved that the total Hamiltonian, including the 
interaction term is

Interaction Hamiltonian
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𝐻 = −
ℏ!𝛻!

2𝑚 −
𝑍𝑒!

4𝜋𝜀" 𝑟
− 𝑖ℏ

𝑒
𝑚𝐴 ; 𝛻 +

𝑒!

2𝑚𝐴!

,



Interaction Hamiltonian
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𝐻 = −
ℏ!𝛻!

2𝑚 −
𝑍𝑒!

4𝜋𝜀" 𝑟
− 𝑖ℏ

𝑒
𝑚𝐴 < 𝛻 +

𝑒!

2𝑚𝐴!

𝐻# = −𝑖ℏ
𝑒
𝑚𝐴 < 𝛻

,

• Two pertubation terms: one linear and the other quadratic in 𝐴
• Consider now the linear term

• Since 𝐴 𝑟, 𝑡 = ̂𝜀 𝐴 𝜔 𝑒& '(%*+-⃗ + 𝐴 𝜔 𝑒%& '(%*+-⃗

it is precisely of the form
𝐻. 𝑡 = ,𝐻𝑒&'( + ,𝐻$𝑒%&'(

considered in time dependent pertubation theory
Ø >𝐻 = ̂𝜀𝐴 𝜔 𝑒$%&')⃗, >𝐻* = ̂𝜀𝐴 𝜔 𝑒%&')⃗



Interaction Hamiltonian
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𝐻# = −𝑖ℏ
𝑒
𝑚𝐴 < 𝛻

,

𝐻. 𝑡 = ,𝐻𝑒&'( + ,𝐻$𝑒%&'(
• This term describes stimulated absorption and emission

processes. Let’s concentrate on absorption, also aptly called 
photoelectric absorption since in the atom an electron makes
a transition induced by the absorption of a photon.

• Absorption is due to ,𝐻$𝑒%&'(, emission to ,𝐻𝑒&'(

a

b



Cross section for photoelectric absorption
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𝑊+, =
2𝜋
ℏ

ℏ!𝑒!

𝑚! 𝐴! 𝜔 𝜓+ 𝑒%&•)⃗ ̂𝜀 < 𝛻 𝜓,
!
𝛿 𝐸+

" − 𝐸,
" − ℏ𝜔

,

• Use Fermi’s golden rule. Consider transitions
between discrete bound states a and b.

𝑊!# =
2𝜋
ℏ

,𝐻$!#
)𝛿 𝐸!" − 𝐸#" − ℏ𝜔

,𝐻$ = −𝑖
ℏ𝑒
𝑚 ̂𝜀𝐴 𝜔 𝑒&*+-⃗ A 𝛻



Dipole approximation
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𝑀+, = 𝜓+ 𝑒%&•)⃗ ̂𝜀 < 𝛻 𝜓,

.

.

. • Consider the matrix element

• An important approximation can be performed in most
spectral ranges. Re-write the matrix element as an integral
in real space:

𝑀!# = C
/

𝑑0𝑟 𝜓!∗ 𝑟 𝑒&*+-⃗ ̂𝜀 A 𝛻 𝜓# 𝑟



Dipole approximation
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.

.

. • 𝑀!# = ∫/ 𝑑0𝑟 𝜓!∗ 𝑟 𝑒&*+-⃗ ̂𝜀 A 𝛻 𝜓# 𝑟
• The spatial extent of the wavefunctions is at most of 

the order of the typical atomic size 𝑑#~ 1 Å: this
determines the maximum effective value of 𝑟 in the 
integral

• The modulus of the wavevector is 𝑘 = !$
%

• Therefore if the wavelength is such that
2𝜋𝑑#
𝜆

≪ 1

we can make the approximation that

𝑒&*+-⃗ = 1



Dipole approximation
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.

.

.
• For valence initial states the dipole approximation 𝑒&*+-⃗ = 1 is

valid up to the UV.
• For core level initial states of not too light atoms the dipole

approximation continues to be valid.



The cross section in the dipole approx.
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𝜎 = 4𝜋) ℏ𝜔 𝛼 𝜓! ̂𝜀 A 𝑟 𝜓# )𝛿 𝐸!
" − 𝐸#

" − ℏ𝜔

• Clearly, dimensions = 𝐿9

• The order of magnitude is determined by the 
dipole matrix element, an effective “area” 
roughly of the order of 𝑎:9, depending on the 
overlap of initial and final wavefunctions

• The Dirac 𝛿 function is an expression of the 
conservation of energy

• The apparent unphysical divergence will be 
solved introducing the concept of lifetime of 
states



Selection rules
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; • Using the properties of the spherical harmonics it
can be shown that the selection rule on ℓ is

Δℓ = ±1

• The selection rule on 𝑚 depends on the state of 
polarization of the radiation
ØFor linealy polarized radiation Δ𝑚 = 0
ØFor circularly polarized radiation Δ𝑚 = ±1



Selection rules

22

∆ℓ = ±1 Conservation of angular momentum
(modulus)

∆𝑚 = ±1
Conservation of angular momentum

(quantization axis component)



Selection rules
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Δℓ = ±1
Δ𝑚ℓ = 0, lin
= ±1, circ



Lifetime and lineshape
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Level 2p 3s 3p 3d 4s 4p 4d 4f

Lifetime (ns) 1.6 160 5.4 15.6 230 12.4 36.5 73

.

.

• We have implicitly assumed that all atomic eigenstates have
infinite lifetime. Apart from the fundamental state (1s) this is
not true.

• All states have a finite lifetime due to
Ø Spontaneous emission, also present for isolated atoms
Ø Collisions between atoms, which induce electron transitions, present

in gases at non negligible pressure
• If 𝑁" atoms are in a given state at 𝑡 = 0, their number decays

exponentially as
𝑁 𝑡 = 𝑁"𝑒

%(2

• For the H atom, the lifetimes 𝜏 of electronic states are



Lifetime and lineshape
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.

.

. • A finite lifetime implies a spectral broadening
Ø Transitions do not occur at a single photon energy

ℏ𝜔)' = 𝐸)( − 𝐸'(
Ø Transitions occur in a band centered around
ℏ𝜔)' with a broadening 𝛤 which can be 
estimated from the Heisenberg uncertainty
principle

• From the energy – time Heisenberg uncertainty
principle, interpret 𝜏 as uncertainty in time, 
thus

𝛤 ≥
ℏ
𝜏



Lifetime and lineshape
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.

.

. • It can be proved that this spectral broadening results in a 
Lorentzian lineshape as a function of energy

• For a transition between states with lifetimes 𝜏# and 𝜏! the 
Lorentzian half width at half maximum (HWHM) is

Γ = ℏ
1
𝜏#
+
1
𝜏!

• The energy dependence of the cross section, the lineshape, is
proportional to

𝐿 𝜔 =
Γ)

ℏ) 𝜔!# −𝜔 ) + Γ)

• This spectral broadening resolves the apparently unphysical
result that the cross section is proportional to a 𝛿 function.



Lifetime and lineshape
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.

.
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Scattering of radiation
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ℏ𝜔, 𝑘 ℏ𝜔#, 𝑘#

• w' = w : elastic scattering
Ø In general: Raleigh
Ø For a free electron: Thomson

• w' ¹ w : inelastic scattering
Ø In general: Raman
Ø For a free electron: Compton (w' < w )

• From the particle point of view scattering is a 2 
photon process: a photon is absorbed (destroyed) and 
another is emitted (created).

• The scattered photon in general has a different energy
and different wave vector (modulus and/or direction)



Scattering cross section
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.

.

.

.
• Recall that the interaction Hamiltonian is

𝐻. =
𝑒
𝑚
𝐴 A �⃗� +

𝑒)

2𝑚
𝐴)

with
𝐴(𝑟, 𝑡) = ̂𝜀 𝐴 𝜔 𝑒&('(%*+-⃗) + 𝐴 𝜔 𝑒%&('(%*+-⃗)

• Absorption is due to 𝐴 𝜔 𝑒%&('(%*+-⃗)

• Emission is due to 𝐴 𝜔 𝑒&('(%*+-⃗)



Scattering cross section
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.

.

.

.

• Scattering is a 2 photon process which is due to
Ø The quadratic term 5/

)6
𝐴), in first order pertubation theory 

(Fermi’s golden rule)
Ø The linear term 5

6
𝐴 A �⃗� , treated as a second order

pertubation
• Qualitatively,  it can be justified by interpreting each 𝐴

term as involving 1 photon (either absorbed or 
emitted).



X-ray scattering cross section
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.

.

.

.

• Define
�⃗� = 𝑘" − 𝑘

the exchanged wavevector.

𝑘
�⃗� 𝑘#

• Term which describes scattering of X-rays (high energy

limit) is 4!

!5
𝐴! using 1st order pertubation theory.



Fermi’s GD for continuum final states

32

.

.

.

• Fermi’s GD for final states in the continuum is

𝑊)' =
2𝜋
ℏ

&𝐻*)'
+𝜌 𝐸)(

𝐸)( = 𝐸'( + ℏ𝜔

• The density of states 𝜌 𝐸 is the number of states
of energy between 𝐸 and 𝐸 + 𝑑𝐸:

𝑑𝑁 = 𝜌 𝐸 𝑑𝐸
with the specification of the dispersion relation 
applicable for photons

𝜔 = 𝑐𝑘
𝐸 = ℏ𝜔 = ℏ𝑐𝑘



Scattering geometry
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.

.

.

• We will discuss the cross section for scattering in which
the scattered photon has direction defined by the 
wave vector 𝑘" within an infinitesimal solid angle 𝑑Ω

𝑧

𝑥
𝑦

𝑘.
𝑑Ω



X-ray scattering cross section
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.

.

.

• It can be proved that the differential cross section is

𝑑𝜎
𝑑Ω

=
𝑒7

16𝜋)𝜀")𝑚)𝑐7
𝜔.

𝜔
̂𝜀 A ̂𝜀. ) 𝑏 𝑒%&8+-⃗ 𝑎

)

= 𝑟")
𝜔.

𝜔 ̂𝜀 A ̂𝜀. ) 𝑏 𝑒%&8+-⃗ 𝑎
)

𝑟, =
-!

./0"12!
≅ 2.82 ×10%34𝑚, the «classical electron radius» or 

«Thomson scattering length» 



Scattering of radiation: general case
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.

.

.

.

• In the general case (not only X-rays) one has to use both terms
of the interaction Hamiltonian

𝐻5 = −𝑖ℏ
𝑒
𝑚
𝐴 C 𝛻 +

𝑒6

2𝑚
𝐴6

=

=
𝑒
𝑚
𝐴 C �⃗� +

𝑒6

2𝑚
𝐴6.

Linear term: second order pertubation theory
Quadratic term: first order pertubation theory



Scattering of radiation: general case
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.

.

.

.

• It can be demonstrated that in the dipole approximation the 
differential cross section is the Kramers – Heisenberg formula

𝑑𝜎
𝑑Ω = 𝑟")𝜔𝜔.

0 𝑚[
9

̂𝜀. A 𝑟!9 ̂𝜀 A 𝑟9#
𝐸9" − 𝐸#" − ℏ𝜔

+
̂𝜀 A 𝑟!9 ̂𝜀. A 𝑟9#
𝐸9" − 𝐸#" + ℏ𝜔.

)

with the condition that

𝐸#" + ℏ𝜔 = 𝐸!" + ℏ𝜔.

and the sum is over all atomic states 𝑛.



Scattering of radiation: general case
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.

.

.

.

• :;
:<
= 𝑟")𝜔𝜔.

0 𝑚∑9
=>0+-⃗12 =>+-⃗23
?24%?34%ℏ'

+ =>+-⃗12 =>0+-⃗23
?24%?34Aℏ'0

)

• A «picture» of this equation
Ø Scattering is due to the sum of «virtual» transitions to 

intermediate states.
Ø Conservation of energy is valid only globally,  not for 

transitions to intermediate «virtual» states

a

b

n

w
w'


