Interaction between EM radiation and hydrogen-like atoms: semiclassical theory

References

 B.H. Bransden & C.J. Joachain, "Physics of atoms and molecules", 2nd edition, Pearson Education – Prentice Hall (2003) Chapter 4 (except 4.4), in parts

Introduction

- Semi-classical theory of the interaction between radiation and hydrogen like atoms.
- Semi-classical since
 - Radiation is treated as wave
 - Atom is treated with quantum mechanics
- This approach is adequate since it can describe scattering and stimulated absorption and emission

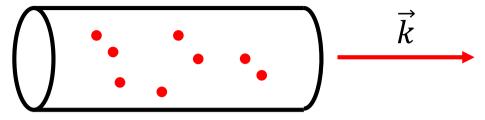
It cannot describe spontaneous emission

- Full quantum treatment requires quantization of EM field: more formal
- All phenomena occurring in hydrogen like atoms are present in many electron ones

A monochromatic photon beam

- Even within the semi-classical approach we will find that absorption and emission of energy between the beam and atoms occurs in quanta of magnitude $\hbar \omega$, that is photons
- Even scattering will be describe in terms of photons.
- Therefore: extend definitions of intensity and flux in particle like terms.

Monochromatic radiation beam: definitions



N =

(Number of photons which cross a surface perpendicular to \vec{k})/ (unit time)

- *I* : Intensity = (Energy crossing the surface) / (unit time)
- Φ : Photon flux = (Number of photons crossing the surface) / (unit time × area)

F: Energy flux= (Energy crossing the surface) / (unit time × area)

$$I = N\hbar\omega \qquad F = \frac{N}{A}\hbar\omega \qquad F = \Phi \hbar\omega$$

Interaction between a wave and an atom

- The interaction is treated with <u>time dependent</u> <u>pertubation theory</u>
- The unperturbed atom's Hamiltonian is H_o
- The pertubation is an EM wave and the time dependent interaction Hamiltonian is H'(t)
- The EM wave has a harmonic dependence on time, thus it is expressed by an Hermitian operator of the type

$$H'(t) = \widetilde{H}e^{i\omega t} + \widetilde{H}^{\dagger}e^{-i\omega t}$$

in which \widetilde{H} is an operator which does not depend on time

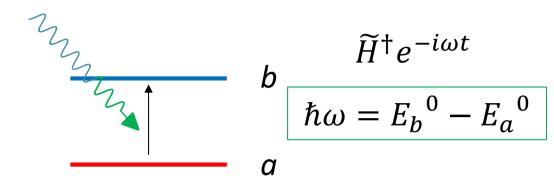
Time dependent perturbation theory

• The unpertubed atom has eigenstates labelled «*a*» and «*b*» with energies E_a^{0} and E_b^{0}

Often called the «initial» and «final» states

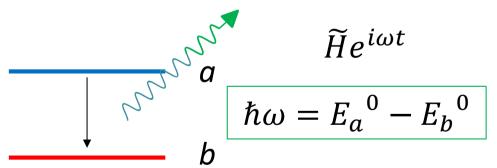
 It can be demonstrated that the transition probability is maximized for two «resonant» conditions deriving from different terms in H'(t)

Time dependent perturbation theory



Stimulated absorption

- A photon of energy $\hbar \omega$ is absorbed by the atom
- The atom makes a transition from *a* to *b*



Stimulated emission

• A photon of energy $\hbar \omega$ is emitted from the atom

The atom makes a transition from *a* to *b*

Fermi's golden rule: transition to discrete states

• For the case of absorption it can be demonstrated that, to first order in the pertubation, the transition probability per unit time for transitions between discrete levels *a* and *b* is

$$W_{ba} = \frac{2\pi}{\hbar} \left| \tilde{H}^{\dagger}{}_{ba} \right|^2 \delta \left(E_b{}^0 - E_a{}^0 - \hbar \omega \right)$$

- $\tilde{H}_{ba}^{\dagger} = \langle b | \tilde{H}^{\dagger} | a \rangle$ is the matrix element of the perturbation
- The Dirac δ function is an expression of the <u>conservation of</u> <u>energy</u>
 - Apparently unphysical: the probability is always 0 except at resonance in which case it diverges. This will be resolved by introducing the concept of <u>lifetime</u> of the eigenstates

Fermi's golden rule: transition to continuum states

• For absorption with final states *b* in the continuum it can be shown that

$$W_{ba} = \frac{2\pi}{\hbar} \left| \widetilde{H}^{\dagger}{}_{ba} \right|^2 \rho \left(E_b{}^0 \right)$$

with the condition that $E_b^{\ 0} = E_a^{\ 0} + \hbar \omega$

• $\rho(E)$ is the <u>density of states</u>, such that the number of states between *E* and *E* + *dE* is

$$dN = \rho(E) dE$$

The classical EM field

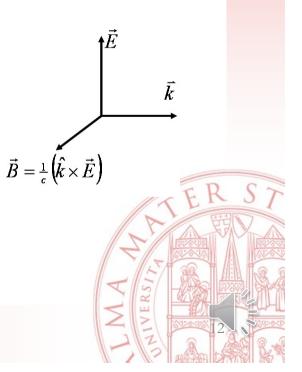
• The EM field is described in terms of the vector and scalar potentials $\vec{A}(\vec{r},t)$ and $\phi(\vec{r},t)$

$$\vec{E}(\vec{r},t) = -\vec{\nabla}\varphi(\vec{r},t) - \frac{\partial \vec{A}(\vec{r},t)}{\partial t} \qquad \text{Electric field} \\ \vec{B}(\vec{r},t) = \vec{\nabla} \times \vec{A}(\vec{r},t). \qquad \text{Magnetic induction field}$$

A plane monochromatic EM wave

$$\begin{split} \vec{A}(\vec{r},t) &= \hat{\varepsilon} \left[A(\omega)e^{i(\omega t - \vec{k} \cdot \vec{r})} + A^*(\omega)e^{-i(\omega t - \vec{k} \cdot \vec{r})} \right] \\ \vec{E}(\vec{r},t) &= -\frac{\partial \vec{A}(\vec{r},t)}{\partial t} = i\omega\hat{\varepsilon} \left[-A(\omega)e^{i(\omega t - \vec{k} \cdot \vec{r})} + A^*(\omega)e^{-i(\omega t - \vec{k} \cdot \vec{r})} \right] \\ \vec{B}(\vec{r},t) &= \frac{1}{c} \left(\hat{k} \times \vec{E} \right) = i \left(\vec{k} \times \hat{\varepsilon} \right) \left[-A(\omega)e^{i(\omega t - \vec{k} \cdot \vec{r})} + A^*(\omega)e^{-i(\omega t - \vec{k} \cdot \vec{r})} \right] \end{split}$$

- The polarization is defined by $\hat{\varepsilon}$. It can be linear or circular
- A(ω) determines the amplitude and intensity of the wave
 - Actually it is real, but we keep the complex notation for consistency



Interaction Hamiltonian

 The unpertubed Hamiltonian for a H – like atom with nucleus of charge Z is

,

$$H_0 = \frac{\left(-i\hbar\vec{\nabla}\right)^2}{2m} - \frac{Ze^2}{(4\pi\varepsilon_0)r}$$

• It can be proved that the total Hamiltonian, including the interaction term is

$$H = -\frac{\hbar^2 \vec{\nabla}^2}{2m} - \frac{Ze^2}{(4\pi\varepsilon_0)r} - i\hbar \frac{e}{m} \vec{A} \cdot \vec{\nabla} + \frac{e^2}{2m} \vec{A}^2$$

Interaction Hamiltonian

$$H = -\frac{\hbar^2 \vec{\nabla}^2}{2m} - \frac{Ze^2}{(4\pi\varepsilon_0)r} - i\hbar \frac{e}{m} \vec{A} \cdot \vec{\nabla} + \frac{e^2}{2m} \vec{A}^2$$

- Two pertubation terms: one linear and the other quadratic in \vec{A}
- Consider now the linear term $H' = -i\hbar \frac{e}{m} \vec{A} \cdot \vec{\nabla}$

• Since
$$\vec{A}(\vec{r},t) = \hat{\varepsilon} \left[A(\omega)e^{i(\omega t - \vec{k} \cdot \vec{r})} + A(\omega)e^{-i(\omega t - \vec{k} \cdot \vec{r})} \right]$$

it is precisely of the form

$$H'(t) = \widetilde{H}e^{i\omega t} + \widetilde{H}^{\dagger}e^{-i\omega t}$$

considered in time dependent pertubation theory

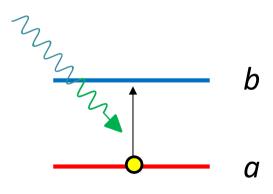
$$\succ \widetilde{H} = \widehat{\varepsilon}A(\omega)e^{-i\vec{k}\cdot\vec{r}}, \widetilde{H}^{\dagger} = \widehat{\varepsilon}A(\omega)e^{i\vec{k}\cdot\vec{r}}$$

Interaction Hamiltonian

$$H' = -i\hbar \frac{e}{m} \vec{A} \cdot \vec{\nabla}$$

$$H'(t) = \widetilde{H}e^{i\omega t} + \widetilde{H}^{\dagger}e^{-i\omega t}$$

- This term describes stimulated absorption and emission processes. Let's concentrate on absorption, also aptly called <u>photoelectric absorption</u> since in the atom an electron makes a transition induced by the absorption of a photon.
- Absorption is due to $\widetilde{H}^{\dagger}e^{-i\omega t}$, emission to $\widetilde{H}e^{i\omega t}$



Cross section for photoelectric absorption

• Use Fermi's golden rule. Consider transitions between discrete bound states *a* and *b*.

,

$$W_{ba} = \frac{2\pi}{\hbar} \left| \tilde{H}^{\dagger}{}_{ba} \right|^{2} \delta \left(E_{b}{}^{0} - E_{a}{}^{0} - \hbar \omega \right)$$
$$\tilde{H}^{\dagger} = -i \left(\frac{\hbar e}{m} \right) \hat{\epsilon} A(\omega) e^{i \vec{k} \cdot \vec{r}} \cdot \vec{\nabla}$$

$$W_{ba} = \frac{2\pi}{\hbar} \left(\frac{\hbar^2 e^2}{m^2} \right) A^2(\omega) \left| \langle \psi_b | e^{i\vec{k}\cdot\vec{r}} \hat{\varepsilon} \cdot \vec{\nabla} | \psi_a \rangle \right|^2 \delta \left(E_b^{(0)} - E_a^{(0)} - \hbar \omega \right)$$

Dipole approximation

• Consider the matrix element

$$M_{ba} = \langle \psi_b | e^{i\vec{k}\cdot\vec{r}}\hat{\varepsilon}\cdot\vec{\nabla} | \psi_a \rangle$$

 An important approximation can be performed in most spectral ranges. Re-write the matrix element as an integral in real space:

$$M_{ba} = \int_{V} d^{3}r \ \psi_{b}^{*}(\vec{r}) \ e^{i\vec{k}\cdot\vec{r}} \ \hat{\varepsilon}\cdot\vec{\nabla} \ \psi_{a}(\vec{r})$$

Dipole approximation

- $M_{ba} = \int_{V} d^{3}r \psi_{b}^{*}(\vec{r}) e^{i\vec{k}\cdot\vec{r}} \hat{\varepsilon}\cdot\vec{\nabla}\psi_{a}(\vec{r})$
- The spatial extent of the wavefunctions is at most of the order of the typical atomic size $d_a \sim 1$ Å: this determines the maximum effective value of r in the integral

 $2\pi d_a$

- The modulus of the wavevector is $k = \frac{2\pi}{\lambda}$
- Therefore if the wavelength is such that

$$\lambda$$
 ~ 1
we can make the approximation that

$$e^{i\vec{k}\cdot\vec{r}}=1$$

. // 1

Dipole approximation

- For valence initial states the dipole approximation $e^{i\vec{k}\cdot\vec{r}} = 1$ is valid up to the UV.
- For core level initial states of not too light atoms the dipole approximation continues to be valid.

The cross section in the dipole approx.

$$\sigma = 4\pi^2 \ \hbar \omega \ \alpha \ |\langle \psi_b | \hat{\varepsilon} \cdot \vec{r} | \psi_a \rangle|^2 \delta \left(E_b^{(0)} - E_a^{(0)} - \hbar \omega \right)$$

- Clearly, dimensions = L^2
- The order of magnitude is determined by the dipole matrix element, an effective "area" roughly of the order of a_0^2 , depending on the overlap of initial and final wavefunctions
- The Dirac δ function is an expression of the conservation of energy
- The apparent unphysical divergence will be solved introducing the concept of lifetime of states

Selection rules

• Using the properties of the spherical harmonics it can be shown that the selection rule on ℓ is

$$\Delta \ell = \pm 1$$

• The selection rule on *m* depends on the state of polarization of the radiation

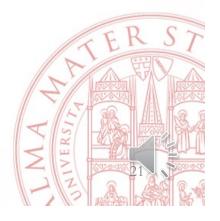
For linealy polarized radiation

;

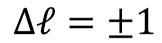
 \succ For circularly polarized radiation Δm

$$\Delta m = 0$$

 $\Delta m = \pm 1$



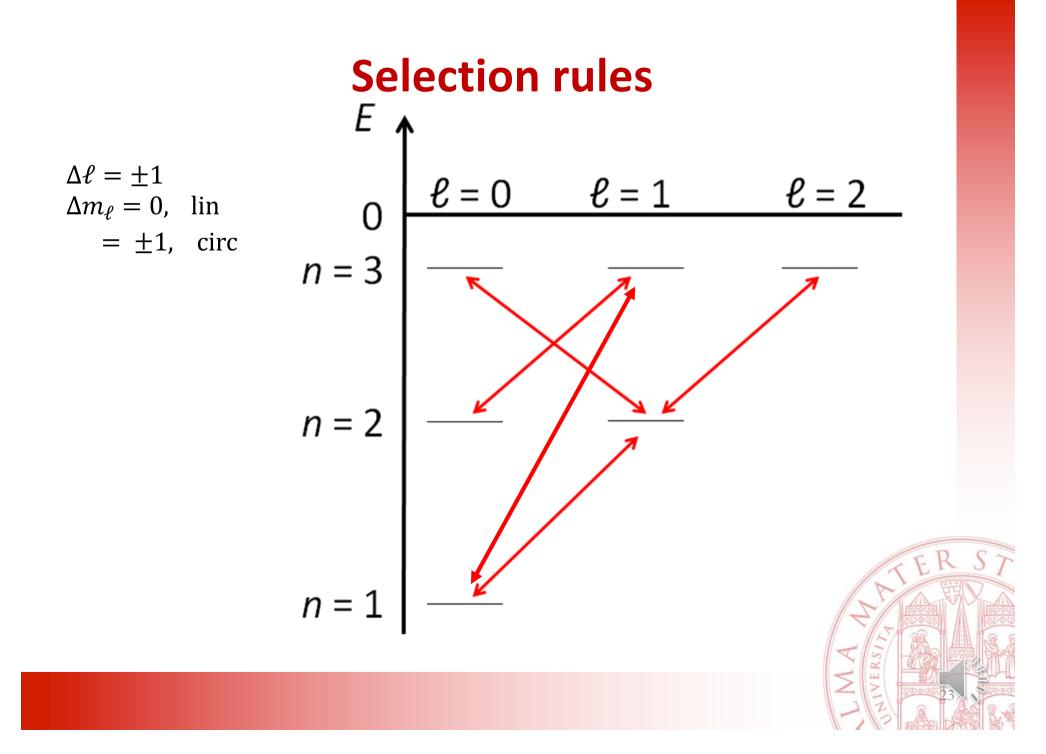
Selection rules



Conservation of angular momentum (modulus)

$\Delta m = \pm 1$

Conservation of angular momentum (quantization axis component)



- We have implicitly assumed that all atomic eigenstates have infinite lifetime. Apart from the fundamental state (1s) this is not true.
- All states have a finite lifetime due to
 - > Spontaneous emission, also present for isolated atoms
 - Collisions between atoms, which induce electron transitions, present in gases at non negligible pressure
- If N_0 atoms are in a given state at t = 0, their number decays exponentially as

$$N(t) = N_0 e^{-\frac{t}{\tau}}$$

• For the H atom, the lifetimes τ of electronic states are

Level	2р	3s	Зр	3d	4s	4p	4d	4f
Lifetime (ns)	1.6	160	5.4	15.6	230	12.4	36.5	73

- A finite lifetime implies a spectral broadening
 - Fransitions do not occur at a single photon energy $\hbar \omega_{ha} = E_h^{\ 0} E_a^{\ 0}$
 - Transitions occur in a <u>band</u> centered around $\hbar \omega_{ba}$ with a broadening Γ which can be estimated from the Heisenberg uncertainty principle
- From the energy time Heisenberg uncertainty principle, interpret τ as uncertainty in time, thus

$$\Gamma \geq \frac{\hbar}{\tau}$$

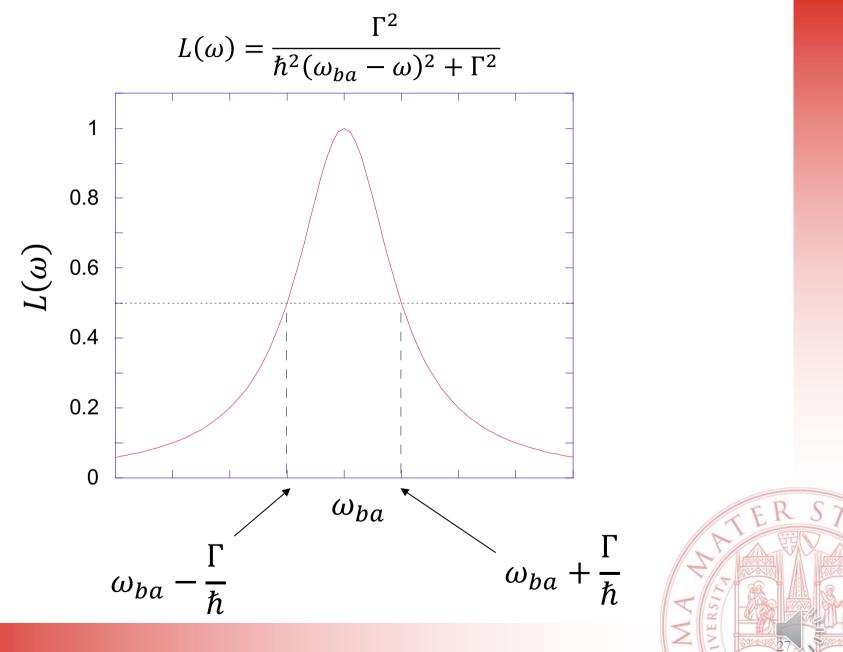
- It can be proved that this spectral broadening results in a Lorentzian lineshape as a function of energy
- For a transition between states with lifetimes τ_a and τ_b the Lorentzian half width at half maximum (HWHM) is

$$\Gamma = \hbar \left(\frac{1}{\tau_a} + \frac{1}{\tau_b} \right)$$

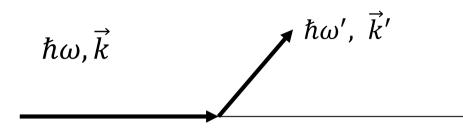
The energy dependence of the cross section, the lineshape, is proportional to

$$L(\omega) = \frac{\Gamma^2}{\hbar^2(\omega_{ba} - \omega)^2 + \Gamma^2}$$

• This spectral broadening resolves the apparently unphysical result that the cross section is proportional to a δ function.



Scattering of radiation



- From the particle point of view scattering is a 2 photon process: a photon is absorbed (destroyed) and another is emitted (created).
- The scattered photon in general has a different energy and different wave vector (modulus and/or direction)
- $\omega' = \omega$: elastic scattering
 - In general: Raleigh
 - For a free electron: Thomson
- $\omega' \neq \omega$: inelastic scattering
 - In general: Raman
 - For a free electron: Compton ($\omega' < \omega$)

Scattering cross section

Recall that the interaction Hamiltonian is ullet

$$H' = \frac{e}{m}\vec{A}\cdot\vec{p} + \frac{e^2}{2m}\vec{A}^2$$

with

$$\vec{A}(\vec{r},t) = \hat{\varepsilon} \left[A(\omega)e^{i(\omega t - \vec{k} \cdot \vec{r})} + A(\omega)e^{-i(\omega t - \vec{k} \cdot \vec{r})} \right]$$

- Absorption is due to $A(\omega)e^{-i(\omega t \vec{k} \cdot \vec{r})}$ Emission is due to $A(\omega)e^{i(\omega t \vec{k} \cdot \vec{r})}$ •
- •

Scattering cross section

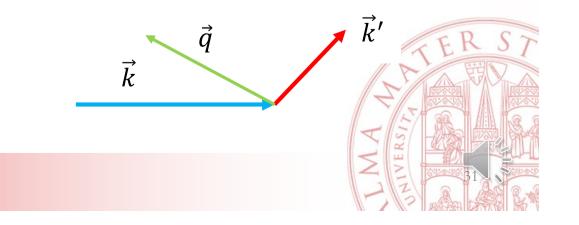
- Scattering is a 2 photon process which is due to
 - > The quadratic term $\frac{e^2}{2m}\vec{A}^2$, in first order pertubation theory (Fermi's golden rule)
 - > The linear term $\frac{e}{m}\vec{A}\cdot\vec{p}$, treated as a second order pertubation
- Qualitatively, it can be justified by interpreting each \vec{A} term as involving 1 photon (either absorbed or emitted).

X-ray scattering cross section

- Term which describes scattering of X-rays (high energy limit) is $\frac{e^2}{2m}\vec{A}^2$ using 1st order pertubation theory.
 - Define

$$\vec{q} = \vec{k}' - \vec{k}$$

the exchanged wavevector.



Fermi's GD for continuum final states

• Fermi's GD for final states in the continuum is

$$W_{ba} = \frac{2\pi}{\hbar} \left| \widetilde{H}^{\dagger}{}_{ba} \right|^2 \rho \left(E_b{}^0 \right)$$
$$E_b{}^0 = E_a{}^0 + \hbar \omega$$

The density of states ρ(E) is the number of states of energy between E and E + dE:
dN = ρ(E) dE

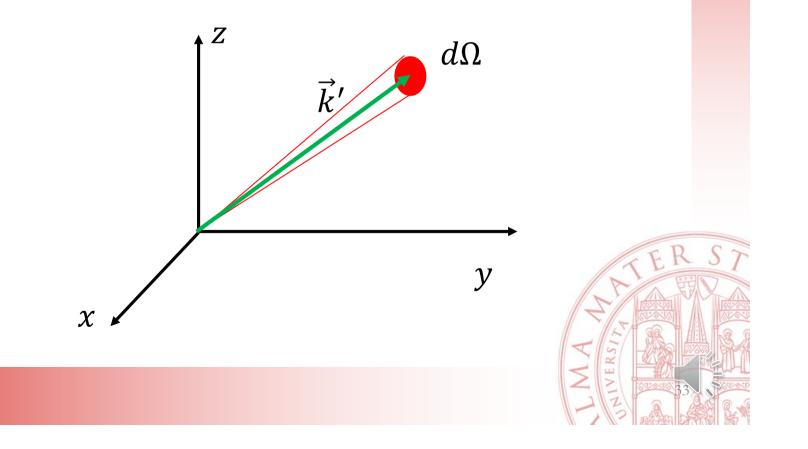
with the specification of the dispersion relation applicable for photons

$$\omega = ck$$
$$E = \hbar\omega = \hbar ck$$



Scattering geometry

• We will discuss the cross section for scattering in which the scattered photon has direction defined by the wave vector \vec{k}' within an infinitesimal solid angle $d\Omega$



X-ray scattering cross section

• It can be proved that the differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{16\pi^2 \varepsilon_0^2 m^2 c^4} \left(\frac{\omega'}{\omega}\right) (\hat{\varepsilon} \cdot \hat{\varepsilon}')^2 \left|\langle b|e^{-i\vec{q}\cdot\vec{r}}|a\rangle\right|^2$$

$$= r_0^2 \left(\frac{\omega'}{\omega}\right) (\hat{\varepsilon} \cdot \hat{\varepsilon}')^2 \left| \langle b | e^{-i\vec{q} \cdot \vec{r}} | a \rangle \right|^2$$

 $r_0 = \frac{e^2}{4\pi\varepsilon_0 mc^2} \cong 2.82 \times 10^{-15} m$, the «classical electron radius» or «Thomson scattering length»

Scattering of radiation: general case

• In the general case (not only X-rays) one has to use both terms of the interaction Hamiltonian

$$\begin{split} H' &= -i\hbar \frac{e}{m} \vec{A} \cdot \vec{\nabla} + \frac{e^2}{2m} \vec{A}^2 \\ &= \\ &= \frac{e}{m} \vec{A} \cdot \vec{p} + \frac{e^2}{2m} \vec{A}^2. \end{split}$$

Linear term: second order pertubation theory Quadratic term: first order pertubation theory

Scattering of radiation: general case

• It can be demonstrated that in the dipole approximation the differential cross section is the Kramers – Heisenberg formula

$$\frac{d\sigma}{d\Omega} = r_0^2 \omega {\omega'}^3 \left| m \sum_n \left[\frac{(\hat{\varepsilon}' \cdot \vec{r}_{bn})(\hat{\varepsilon} \cdot \vec{r}_{na})}{(E_n^0 - E_a^0 - \hbar \omega)} + \frac{(\hat{\varepsilon} \cdot \vec{r}_{bn})(\hat{\varepsilon}' \cdot \vec{r}_{na})}{(E_n^0 - E_a^0 + \hbar \omega')} \right]^2$$

with the condition that

$$E_a^0 + \hbar\omega = E_b^0 + \hbar\omega'$$

and the sum is over all atomic states n.

Scattering of radiation: general case

•
$$\frac{d\sigma}{d\Omega} = r_0^2 \omega \omega'^3 \left| m \sum_n \left[\frac{(\hat{\varepsilon}' \cdot \vec{r}_{bn})(\hat{\varepsilon} \cdot \vec{r}_{na})}{(E_n^0 - E_a^0 - \hbar\omega)} + \frac{(\hat{\varepsilon} \cdot \vec{r}_{bn})(\hat{\varepsilon}' \cdot \vec{r}_{na})}{(E_n^0 - E_a^0 + \hbar\omega')} \right] \right|^2$$

- A «picture» of this equation
 - Scattering is due to the sum of «virtual» transitions to intermediate states.
 - Conservation of energy is valid only globally, not for transitions to intermediate «virtual» states

