

1st on-line School on Synchrotron Radiation "Gilberto Vlaic": Fundamentals, Methods and Application

Introduction to photoelectron spectroscopy in atoms, molecules and solids

G. Stefani ISM-CNR

c/o Dipartimento di Scienze, Universita' Roma Tre

The spectroscopists' dream

The photoelectric effect

$$E_e = hv - \Phi - \Delta energy$$

Basic Concept Energy Distribution Curve EDC

Photoelectron in abstract 37,398 from 1951 to 2020 [Scopus june 30. 2021]

Documents by year

Documents

The ubiquitous photoelectron spectroscopy

Documents by subject area

[Scopus june 30. 2021]

Outline

- Photoelectron energy and bound state energy
- Satellites, multiplet splitting: many-body
- Chemical shift
- Molecular photoelectron spectra
- Photoelectron angular distributions
- Photoelectron emission in solids
- PES EDC and density of states
- Angular resolved PES: electronic band structure
- Spin and time resolved PES: charge dynamics
- High energy photoemission HAXPES

C. Mariani and G. Stefani Chapter 9 in «Synchrotron Radiation Basics, Methods and Applications»

Photoelectron Spectroscopy Schematics:

Available photon sources:

He Iα=21.23eV

He IIα=40.82eV

Mg Ka1,2 = 1253,6 eV

Al Ka1,2=1486,6eV

Synchrotron Radiation

Energy Distribution Curve EDC

Energy conservation: Photoelectron energy & Binding energy

Photon absorption transition probability

$$\frac{d\sigma}{dh\nu} = 4\pi^2 \alpha h \nu \sum_{B} \left| \hat{\varepsilon} \bullet \left\langle \Psi_{B} \right| \sum_{i} \vec{r}_{i} \left| \Psi_{A} \right\rangle \right|^{2} \delta(E_{B} - E_{A} - h\nu)$$

From Boscherini's lectures at this school $|\Psi_{A}\rangle$ Initial state A = Neutral ground (excited) st $|\Psi_{B}\rangle$ Final state B = Residual ion + free electronic $d\sigma \int d\sigma$ $d\sigma$ Experiment experiment experiment

$$\frac{d\sigma}{dh\nu} = \iint_{E\Omega} \frac{d\sigma}{d\Omega dE} d\Omega dE$$

X-section vs. Photoelectric current

 $J_{e}(h\nu, \vartheta, \phi) = J_{h\nu}(\rho l) \int_{\Delta E \Delta \Omega} \frac{d\sigma}{d\Omega dE} F_{an}(E, \Omega) \eta_{det}(E) d\Omega dE$

Photoemission peak lineshape

- 1. Photon monochromaticity
- 2. Electron analyzer resolution3. Final state lifetime (uncertainty principle)

Gaussian Gaussian Lorentian

Lineshape =Convolution (1,2,3)

Energy balance for 2e atom: He 1s²

$$E_B = E_A + h\nu$$

$$\Psi_A = \hat{A}\phi_1\phi_2$$

$$(E_{1s} + E_{1s}) + h\nu = E_{1s} + E_e$$

$$h\nu - E_e = BE_{1s}(24.6eV)$$

One single photoemission peak is expected Energy and momentum are conserved

Complexity of the photoelectron spectrum: He 1s²

Primary photoionization processes

Photon = single particle operator
 2 or more particles involved in final state = e-e correlation
 Relaxation & e-e correlation in photoemission = satellite

A many electron atom

Sudden approximation

$$\left|\Psi_{B}^{(N)}\right\rangle = \hat{A}(\varepsilon_{l}; \left|\Psi_{B}^{(N-1)}\right\rangle)$$

$$\frac{d\sigma}{d\Omega dE_e} \propto \frac{1}{h\nu} \sum_{A,B} \left| \hat{\varepsilon} \bullet \left\langle \varepsilon_l \right| \vec{r}_j \left| \phi_j(\vec{r}_j, \sigma_j) \right\rangle \left\langle \Psi_{R,B}^{(N-1)} \right| \Psi_{R,A}^{(N-1)} \right\rangle \right|^2 \delta(E_e + E_B^{(N-1)} - E_A - h\nu)$$

Frozen core approvimation Neglects relaxation $\begin{aligned}
H'_{0} &= H_{0} \\
\frac{d\sigma}{d\Omega dE_{e}} \propto \frac{1}{hv} \sum_{A,B} \left| \hat{\varepsilon} \cdot \left\langle \varepsilon_{l} \left| \vec{r}_{j} \right| \phi_{j}(\vec{r}_{j}, \sigma_{j}) \right\rangle \right|^{2} \delta(E_{e} + \varepsilon_{j} - hv)
\end{aligned}$

> Photoelectron Spectroscopy 1st online SILS School G. Stefani

A, B

The full photoemission picture in He (e-e)

Koopmans energy vs. photoemission peaks

Complexity: is e-e all? Spin-Orbit coupling!!

CuCl₂ multiplet & satellite (I-s) (e-e)

Chemical shift: neighbour interaction

Journal of Electron Spectroscopy and Related Phenomena Volume 185, Issues 8-9, September 2012, Pages 191-197

PES spectrum of H₂ (nuclear motion)

Molecular PE x-section: nuclear motion

$$H_{0} = H_{0}(kin) + H_{0}(e-n) + H_{0}(e-e) + H_{0}(s-o) + H_{0}(n-n) =$$

$$= \sum_{i=1}^{N} \frac{p_{i}^{2}}{2m} + \sum_{i=1}^{N} -\frac{Ze^{2}}{r_{i}} + \sum_{i>j}^{N} \frac{e^{2}}{r_{ij}} + \sum_{i=1}^{N} \zeta(r_{j})\vec{l}_{i} \cdot \vec{s}_{i} + \sum_{i>j}^{M} \frac{e^{2}Z_{i}Z_{j}}{r_{ij}}$$
Born Oppenheimer
$$\left| \Psi_{A,B}^{(N)} \right\rangle = \left| \Psi_{A,B}^{(N)} \right\rangle \left| \Psi_{A,B}^{vib} \right\rangle$$

$$A_{A,B}$$

$$\frac{d\sigma}{d\Omega dE_{e}} \propto \frac{1}{hv} \sum_{A,B} \left| \hat{\varepsilon} \cdot \left\langle \varepsilon_{i} \right| \vec{r}_{j} \left| \sum_{A\lambda} C_{A\lambda} \phi_{A\lambda} \right\rangle \left\langle \Psi_{B,R}^{(N-1)} \right| \Psi_{A,R}^{(N-1)} \right\rangle^{2}$$
Frank Condon
$$\left| \left\langle \Psi_{B}^{vib} \right| \Psi_{A}^{vib} \right\rangle \right|^{2} \delta(E_{e} + E_{B}^{(N-1)} - E_{A} - hv)$$

PES O₂ vibrational and multiplet splitting

PE angular distribution

Angular distributions: state symmetry

Angular distribution and neighbouring atoms

Application to surfaces

From central to periodic potential

Photoelectron must escape from solid

Step 1: optical excitation in the solid

Step 2: Transport to the surface

Step 3: Transition to vacuum

J_e in the 3 step model

Typical J_e (E_e , Θ) distribution in solids

From: Photoelectron Emission Spectroscopy Claus M. Schneider

From Kyle Shen Stanford University «High Resolution UPS»

It really works on solids: i.e. Au

Copyright © 2013 Casa Software Ltd. www.casaxps.com

Rev. Sci. Instr. 89, 073105 (2018);

Photoemission spectrum at Fermi Edge

PES of the Mott insulator TiOCI: e-e correlation

M. Hoinkis et al. PHYSICAL REVIEW B 72, 125127 2005

Direct and Resonant Photoemission

Resonant photoelectron EDC: CuPC/Au(100)

2D electron gas spatially confined Cs/InAs(110)

Intensity (arb. units)

Surface core level shift vs. mean free path In 4d

In 4d core-level $He_{II\beta}$ (48.372 eV) Highresolution In-4d corehttp://www.globalsino.com/EM/page4809.html levels at 200 freshly cleaved 🕂 Ha Al ▲ Mo Aq 100 InAs(110), Au d Ni △ Be Intensity (arb. units) taken with mean free path λ (Å) C C Se 50 Si Fe b Ge VW He_{IIa} and He_{IIb} theory radiation; 20 Voigt-profiled $He_{II\alpha}(40.814 \text{ eV})$ fit with surface 5 globalsino.com/EM/ (S, blu lines) 32 10 20 5 50 100 200 500 1000 2000 and electron kinetic energy (eV) В bulk (B, red lines) Hella Hellß doublet S components (3/2, 5/2)16.5 17.0 17.5 18.0 18.5 19.0 19.5 Binding energy(eV)

Angular resolved photoemission

$$J_{e} \propto \sum_{i,f} \left\{ \left(f(E_{i}) \left[1 - f(E_{f}) \right] \right\} \cdot \left| M_{i,f} \right|^{2} \delta(E_{f} - E_{i} - h\nu) \cdot \delta(K_{i} - K_{f} + G) \cdot \delta(K_{i}^{''} - K_{f}^{''} + G^{''}) \right\} \right\}$$

Angle resolved PES: K, E

graphs from Ph. Hoffmann

Electronic surface states at Cu(111)

S.D. Kevan, Phys. Rev. Lett. 50,526 (1983).

Dangling bonds Si(111)-(2x1)

Dangling-bond surface state dispersion at the Si(111)-(2x1) reconstructed surface along the GJ direction of the Surface Brillouin Zone (SBZ). One of the first experimental ARPES dangling-bond dispersion (left panel); recent high-resolution ARPES dangling-bond dispersion.

Pentacene on Cu(119): HOMO(ε ,K) dispersion

2-nm thick pentacene film grown on Cu(119). ARPES selection of spectra taken at normal emission and varying the photon energy (left); highest-occupied molecular-orbital (HOMO) band dispersion along k_{\perp} (right). E. Annese et al. Surf. Sci. 601 (2007) 4242

Valence band of graphite (HOPG), stacking of the ARPES spectra as a function of polar angle (left) and experimental band structure (right).

A. R. Law et al. Phys Rev B 34 (1986) 4289

Graphene band structure

Surf Sci 84, 380 "Synchrotron Radiation Basics, Methods and Applications» pg. 275)

Graphene band structure along GKM and zoom of the Dirac cone around the K point of the SBZ. ARPES data taken with high-resolution ARPES and a He discharge source

Band formation in graphene multilayers

Formation of graphene electronic band from 1-layer (extreme left) to 4-layer (extreme right) Ohta et al. Phys Rev. Lett. 98 (2007) 206802.

Spin Resolved Photoelectron Spectroscopy: EuO

Schneider arXiv:1809.00631v2 [cond-mat.mtrl-sci] 30 Nov 2020

Time Resolved Photoelectron Spectroscopy: WSe2

Simplified overview of the FLASH time-resolved momentum microscopy. It acquire band-mapping movies

Time Resolved Photoelectron Spectroscopy : WSe2

Why Hard X-ray PES (HAXPES)?

C.S. Fadley in: J.C. Woicik ed., «Hard X-ray photoelectron spectroscopy (HAXPES), Springer series in Surface Science

Main difficulty with HAXPES

Courtesy of F. Offi

First HAXPES on valence band EDC

G. Paolicelli et al., Journal of Electron Spectroscopy and Related Phenomena 144-147, 963 (2005)

Courtesy of F. Offi

Operando HAXPES: LiCoO2 battery electrode

H. Kinchi et al. Electrochemistry Communications 118 (2020) 106790

References

C.S. Fadley "Basic Concepts of X-ray Photoelectron Spectroscopy", in Electron Spectroscopy, theory, techniques and applications, Brundle and Baker Eds. (Pergamon Press, 1978) Vol. 11, ch.1

*S. Hufner "Photoelectron Spectroscopy, principle and applications" (Berlin Springer 2003) 3rd Edition

*****V. Schmidt "Photoionization of atoms using synchrotron radiation" Report on Progress in Physics 55(1992)1482

*****C.M. Bertoni in "Synchrotron Radiation Basics, Methods and Applications (Springer Verlag Berlin Heidelberg 2015, pg. 145)

*****C. Mariani and G. Stefani in "Synchrotron Radiation Basics, Methods and Applications (Springer Verlag Berlin Heidelberg 2015, pg. 275)

*J.C. Woicik ed., «Hard X-ray photoelectron spectroscopy (HAXPES), Springer series in Surface Science

Campuzano, Norman, Randeria. Photoemission in the high-Tc superconductors. https://arxiv.org/pdf/condmat/0209476.pdf

*Damascelli, Hussain, Shen. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75 473 (2003)

*Damascelli. Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta. Vol. T109, 61–74, 2004

(https://www.cuso.ch/fileadmin/physique/document/Damascelli_ARPES_CUSO_2011_Lecture_Notes.pdf)