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A B S T R A C T

Everybody dreams to have X-ray eyes and discover the most invisible secrets of the world around us. X-rays can probe matter (depth resolved) down
to atomic resolution, if relying on diffraction-based techniques. An X-ray diffraction pattern may contain information over many length scales
(atomic structure, microstructure, mesostructure). This peculiarity justifies the well-recognized impact of several X-ray diffraction-based techniques
to diverse fields of research. On the other hand, X-ray spectroscopies (both in absorption and in emission) provide insights on the electronic
structure and, exploiting element selectivity and local environment, can complement or even replace scattering techniques for diluted systems and
amorphous materials. Herein, we provide a theoretical foundation which spans from very basic concepts, through well-known techniques, with
applications to nanomaterials research. An increasing level of material complexity is explored: size and shape analysis of nanoparticles dispersed in
solution or single nanostructures localized onto surfaces; local morphology/strain analysis of nanostructured surfaces; average defects analysis of
stacking faulted nanocrystals; regular 2D and 3D lattices of self-assembled nanocrystals; clusters of nanocrystals without any nanoscale lattice order,
standing alone as isolated objects or embedded in tenths-of-µm-thick polymers (here coherent and focused X-rays are mandatory to explore the
spatial inhomogeneity and lattice (in)coherence of the materials).

1. Premises

1.1. Tailoring physical properties of matter

Today, many novel nanomaterials (nanoparticles – NPs – and/or nanocrystals – NCs) can be synthesized by physical (e.g.
Molecular Beam Epitaxy, Laser Ablation, Sputtering and Metal Organic Vapour Phase Epitaxy) [1] or by chemical (e.g. Chemical
Vapour Deposition or colloidal synthesis) [2,3] approaches. Independent of the adopted synthesis route, the emerging properties of
nanoscale materials are often distinct and tunable with respect to the corresponding bulk, allowing additional degree of freedom
towards improvements for the desired applications. Nanomaterials are characterized by i) a confined electronic density of states, due
to their reduced size and ii) an extraordinary high (>50% for nanocrystals of the order of 1–2 nm) [4,5] surface-to-volume atoms’
ratio. New physical and chemical emergent properties may appear in the nanometer size regime. We refer to them as mesoscopic state
and mesoscopic phenomena. Novel electronic, magnetic, optoelectronic or catalytic properties, not found in either bulk or molecular
systems, can be engineered by varying the nanostructure size and shape, under a tight control of the synthesis parameters. So far, NCs
with different shapes (spheres, disks, cubes, rods, multipods) have been manufactured [6–11] and elaborated hybrid nanocrystals
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synthesized [12,13]. These hybrid nanostructures consist of multi‐material domains attached each other through hetero-interfaces. In
the last decade, innovative and creative concepts such as assembly and self‐assembly [14–16] have become central to modern
nanotechnology, with the design of assembled superstructures made by ordered or random aggregation of individual building blocks.
This is the case of super-crystals made by NCs organized according to a two-dimensional/three-dimensional (2D/3D) periodic or non-
periodic superlattices [17], which emerging properties are not explainable as the linear combination of their building blocks.

In summary, in the last twenty years, NC synthesis has evolved from single‐material nanocrystals (NCs) to multi-domain NCs and
complex NC architectures, assisted by different local and ensemble characterization methods [18–23], such as: high‐resolution
transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) [24–26], eventually equipped with
electron energy loss facility [27,28], electron diffraction (ED) [29–34], X-ray diffraction (XRD) [35–37], small and wide angle X‐ray
scattering (SAXS [23,38–49] total scattering [50,51], and WAXS [23]), magnetic neutrons scattering and X-ray diffraction [52],
Raman [34,53–64], Mössbauer [65–67], X‐ray absorption (XAS) [68–76], X-ray-emission (XES) [77–87] and X-ray fluorescence
(XRF) [88–91] spectroscopies.

1.2. Nanostructure generations

The manipulation of matter at atomic, molecular and supramolecular levels is realized by nanotechnology with the aim to create
novel hybrid materials, devices, and systems (hybrid means a mixture of inorganic and organic components).

Independently if fabricated with bottom-up or top-down techniques [1], distinct generations of nanostructures, in terms of
complexity, can be identified [92]:

I. passive nanostructures where the scientist’s ability was devoted to the control of the chemistry and of the morphology of
nanoparticles, nanotubes, nanocomposites, nanocoatings and nanostructured materials in order to obtain monodispersed and
single crystalline phase structures;

II. active nanostructures with tailored material functions to apply as electronics, as sensors, targeted drugs or adaptive structures;
III. hierarchical nanosystems which means µm-scaled 3D supramolecular assembly of nanostructures with material properties de-

pendent on the building nanosystems and their relative positions;
IV. smart nanosystems which are evolutionary bio-nano systems, merging molecules and nanostructures, with hierarchical functions

which change in time following precise stimuli.

Similar to biological systems, which continuously modify themselves in response to the stimuli they receive from the surrounding,
“smart materials”, if triggered by an external stimulus, can modify their properties [93–96], often in a reversible manner. Various
stimuli can be identified: temperature, light, electric or magnetic fields, stress, strain, changes of pH, or of analyte concentrations in
air, water, biological fluids.

Fig. 1 shows different length scales from natural and engineered world, but selecting only carbon-based materials [97]. Indeed,
carbon is the most versatile element of the periodic table, being present in all proteins, peptides, nucleic acids, carbohydrates, as well
as forming many allotropes due to its valence and hybridization: diamond, graphite, lonsdaleite, C60 buckminsterfullerene, C540
fullerite, C70, amorphous carbon, carbon nanotubes and, although chemically not pure, active carbons.

To fully exploit the vast potential of active nanostructures, hierarchical nanosystems and smart materials, non-destructive
structural and morphological characterization techniques are required, since most of their novel properties depend on both analytical
and structural features of each inorganic and biological nano-components as well as on their interaction.

The engineering of a complex material, such as hierarchical or smart materials, should require structural and morphological
studies across multiple length scales, from the building blocks (NPs/NCs) to the whole architecture. In this review, we will focus on a
selection of X-ray techniques, both diffraction-based and spectroscopy-based ones, the former being the core of materials structural
analysis and the latter having the peculiarity of providing element selectivity. An X-ray diffraction pattern indeed may contain
information over many length scales: the atomic structure, the microstructure, as well as the mesostructure of the material. Examples
of nanotechnology-beneficiary smart materials are theranostics systems [98,99], nanomaterials for environmental science [100–108],
tissue engineered bio-inspired scaffolds [109–114] electronic [115–118], optoelectronic [115,119–124], spintronic [125,126],
photovoltaic [115,127–130], catalysis [131–145], sensing [146–149] etc. In the fraction of mentioned systems, where “nano meets
biology” [150], the interactions of the nanoparticles or nanocrystals with the biosystem [151] have to be described as a multi-
dimensional and multiscale problem.

Laboratories aiming to fabricate a scaffold able to mimic a tissue/organ, need to reproduce the hierarchic structure and com-
position of the natural tissue [152,153] to replace or repair. Typical questions concern the structure and morphology of such bio-
material: is it amorphous or crystalline? What is the actual phase composition of the crystalline component? Does it contain an
organic component? What is the structural correlation between inorganic and organic component? Which are the structural changes
with time? Is the change related to the organic or inorganic component? Is the scaffold laterally inhomogeneous? An efficient non-
destructive characterization tool is required to find quantitative answers to these questions.

Focused X-ray beams are today available to locally sample heterogeneity by imaging and mapping the micro- and nano-scale
spatial variations [154–160] of structural, morphological or electronic properties across the different length scales. This achievement
has been enabled by the advent of high-brilliance, third-generation synchrotron sources of X-ray radiation and by the fabrication of
high-resolution X-ray focusing optics [161]. Focused micro and nano X-rays beams allow to study single nanomaterial objects and
nanostructures, either organized in hetero-structures or assembled in periodic or disordered architectures, or embedded in a
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biological environment. Focused X-ray beams are used to: monitor the sample heterogeneity at different length scales [160], with a
spatial resolution set by the focused beam size; induce functionalities to the NCs by X-ray micro and nano-patterning [162–168].

In what follows, we will describe the power of hard X‐rays (in literature photons with energies above 5 keV are referred as hard X-
rays) to probe matter. Key features, such as the large penetration depth (from several microns to tents of millimeters) and the short
wavelength (Ångstroms and sub-Ångstrom), will be related to the unique possibility offered by hard X-rays to achieve (depth re-
solved) atomic resolution, at least in principle. It is well known that atomic resolution can be reached by electron microscopies, but
with severe limitations on sample thickness and sample environment, restrictions which are overcome by hard X-rays. Indeed, hard X-
rays can probe matter at mm depths. In addition, in vivo [169–174], in situ [71,73,82,134,139,175–179] and operando
[73,139,180–188] experiments can be realized to monitor in real time a specific process.

The review will introduce basic principles behind scattering-based techniques, choosing the most widely used to study structure
and morphology of nanomaterials (SAXS, WAXS, total scattering). In addition, some hints will be given on the novel opportunities
offered by recent microscopies (X-ray scanning microscopy and coherent diffractive imaging) which adopt (incoherent/coherent) X-
rays micro and nano beams. The latter are particularly suitable for the structural characterization of NCs as such materials fulfilling
the translational symmetry at the local scale only; consequently, the standard diffraction approaches are of non-straightforward
application. In parallel, we will consider also X-ray spectroscopies, such as extended X-ray absorption fine structure (EXAFS), X-ray
absorption near edge structure (XANES) and X-ray emission spectroscopy (XES) allowing both electronic investigation and structural
determination at the local scale to be achieved.

The review aims to introduce scientists working in the field of nanotechnology to specific X-ray diffraction techniques suitable for
the structural/morphological characterization of nanocrystals. However, basic notions of crystallography (direct and reciprocal
space, lattice symmetry, Miller indexes, Bragg law [189,190]) are mandatory to fully profit of the reading. Case studies will be
discussed, specifying if a focused but partially coherent nano/micro X-ray beam was utilized. Considering the number of experiments
using X-ray diffraction-based techniques for the analysis of modern nanomaterials which recently appeared in literature, it is im-
possible to give a comprehensive collection of experiments in this overview. We have picked up few selected applications from
literature related to standard as well as more exotic nanomaterial studies.

2. Imaging regimes

When light approaches matter, each point of the illuminated object scatters the incident illumination into spherical waves ac-
cording to the Huygens principle [191]. A few microns away from the object surface, the waves emanating from all object points
become entangled, delocalizing the object’s details. Therefore, a method must be found to reassign (“focus”) all the waves that are

Fig. 1. Length scales from the natural and engineered world. Panel (d) reprinted with permission from Ref. [97]. Copyright 2012, Nature Publishing
Group.
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emanated from a single point object into another point in space (the “image”), as done by microscopes. A microscope adopts an
objective lens to create the object image by recombining the scattered waves with correct phases (see Fig. 2a). Microscopes exist for
visible light, X-rays or electrons. In all of them, the image reconstruction has a resolution which is always affected by the lenses. For
comparison, a lens-less set-up is schematically shown in Fig. 2b. Here, the X-ray beam scattered by the object freely propagates until it
reaches the 2D detector. Since the detector can only register intensities, the phases of the propagated complex-valued wavefront are
lost in the measurement process. Therefore, a phase retrieval algorithm substitutes the lens in order to recover the image of the
object. The algorithm engine works as virtual optics. The resolution in both imaging methods is given by

sin( )
, with λ being the X-ray

wavelength and θ the maximum scattering angle accepted by the lens or by the detector (numerical aperture). Wavelength, numerical
aperture, noise, mechanical precision and stability and sample radiation damage are all factors affecting and limiting the final phase
retrieved image resolution.

A certain degree of coherence of the incoming radiation is required. The spatial and temporal coherence of light is the property
which correlates regions of the wavefield separated laterally (spatial coherence) or longitudinally (temporal coherence). Temporal
coherence can be introduced, for example, by a bandpass frequency filter, whereas spatial coherence is imparted by any spatial filter,
such as a pinhole. The price for obtaining this partially coherent wave is, of course, the loss of optical energy (i.e. intensity) in-
troduced by the temporal and spatial filtering processes. In chaotic sources, the spatial coherence length (ξc) is related to the size w of
the source and to the distance R relative to the source by = Rc w . The temporal coherence length (Lc) is related to the beam

monochromaticity Δλ and is =Lc 2
2

.
High-brilliance X-ray sources normally used in most of the imaging experimental setups (synchrotron sources [192–197] or free

electron lasers [198–203]) may allow to produce coherent or partially coherent beams with low divergence characteristics. The
extremely small divergence of this kind of sources allows most theoretical treatments to adopt the paraxial approximation, and to
describe the diffraction theory within the scalar formulation.

If the source-specimen distance is z1 and the specimen-detector is z2, the defocusing distance = +zd
z z

z z
1 2

1 2
and the magnification

factor = +M z z
z

1 2
1

can be defined (projection geometry), where the registered image is M times the real size of the object.

Three different imaging regimes can be exploited as a function of the Fresnel distance df
a2

where a is the typical object size and λ
is the wavelength (Fig. 3).

Near-Field regime (z dd f ) In this case the contrast arises as an edge-enhanced image and the sharp edges of the object appear
as characteristic fringes of oscillating intensity.

Fresnel regime (z dd f ) This situation is called also “holographic regime” and an interference pattern is formed by a great number
of alternating fringes more and more closely spaced. In the Fresnel regime, the scattered intensity has a curved wavefront.

Fraunhofer regime (z dd f ) Finally we mention the far-field or Fraunhofer regime. This condition means that the typical size of
the object is negligible compared with the distance involved. Any resemblance between recorded image and object is lost. The far-
field is usually described as the region where the detected wavefield can be well defined by the Fourier transform of the exit surface
wave of the object. The scattered intensity has a plane wavefront, i.e. the phases of the secondary waves scattered from the object in
the detector plane depend linearly on the coordintaes of the scattering centers.

Fig. 2. (a): sketch of a conventional full-field imaging setup with a lens. (b): schematic lens-less imaging set-up. Previously unpublished figure.
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2.1. Phase importance

Whenever X-rays interact with a coherent medium (crystal) or for coherent X-rays interacting with a disordered specimen we will
have to take into account the relative positions of the scattering centers, mathematically described by phase factors.

Let’s see how important is the phase contribution for whatever scattering process.
Parts (a) and (b) of Fig. 4 show a schematic representation of the fullerene and XY chromosomes electron density, respectively.

Fig. 3. Different lens-less imaging regimes: absorption contrast i.e. contact mode where only absorbing part is imaged; phase contrast and Fresnel
regime where the borders of the less absorbing part of the object is imaged; far field regime where any resemblance with the object is lost. Previously
unpublished figure.

Fig. 4. (a) and (b) show a schematic representation of the fullerene and XY chromosomes electron density; (c) and (d) modulus-only Fourier
syntheses obtained from FFT−1 of aei a and bei b, using zero phase and the correct modulus of each pashor; (e) and (f) phase-only Fourier syntheses
obtained from FFT−1 of aei a and bei b, using the correct phase of each pashor but modulus equal to one. Previously unpublished figure.
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The Fast Fourier Transform (FFT) of each image are the phasors aei a and bei b, complex functions to be inverted (by computing the
inverse FFT, FFT−1) in order to find back the original images. We can make this inversion in two different ways: i) using the correct
modulus of each phasor but zero phase (modulus-only Fourier syntheses), obtaining the results in Fig. 4c,d, or ii) using a dummy
modulus (assumed here equal to one) but the correct phases (phase-only Fourier syntheses), computing the images in Fig. 4e,f. This
comparison clearly shows that spectral amplitude and phase play significantly different roles: the image information is preserved if
the phase is retained. Indeed, only the images reconstructed through the phase-only Fourier syntheses (Fig. 4e,f) have many im-
portant features in common with the originals. This simple calculation is a strong evidence that phase shifts should be measured as
carefully as possible (not feasible in a real experiment) or at least recovered a posteriori from the diffraction data by means of
dedicated algorithms. We will deepen this argument in § 6.6. and § 6.7 In summary, phase contains the essential information of a
wave signal describing an elastic scattering with respect to the amplitude which does not change as dramatically.

Fig. 5 provides a pictorial view of some X-ray imaging techniques available today, where X-ray crystallography and X-ray co-
herent diffraction imaging can be considered as different ways to access matter, respectively crystalline and not, at atomic/nano-
metric resolution. Crystallography, in the realm of imaging techniques, is the right tool to discover the most invisible secrets of the
world around us, which can be explored down to atomic resolution [204]. For many years, in the X-ray field, it has been the only
technique available at this resolution, with the ultimate limitation of using a crystal of sufficient quality and size to produce a
significant diffraction signal. Since the beginning and up to a few years ago, this stringent condition has prevented several materials
not readily makeable in form of crystals, such as membrane proteins and all intrinsically disordered proteins, or - to better say - in
crystals of insufficient size and quality, from being studied. In the last decade a novel technique, called X-ray coherent diffractive
imaging (CDI), appeared [154,205–211]. This technique uses coherent hard X-ray beams and has been conceived to image non
crystalline matter (such as most of the biologic world), at least at nanometric resolution. In the interaction with matter the beam
coherence is perturbed encoding structural fingerprints of the irradiated matter (sample). The fundamental ingredient is therefore the
coherence of the X-rays source, only available at third generation synchrotron facilities [192–197], and fourth generation syn-
chrotron facilities [212–214] or from free electron lasers (FEL) [198–203,215,216]. In cases when dose related problems can be
overcame [217], interesting crystallographic results have been achieved so far with X-ray coherent beam to solve the structure
solution of protein nanocrystals [218–220].

Before exploring the interesting world of X-ray scattering techniques, at the base of modern microscopies [221,222], we will
resume basic concepts in common to all X-ray scattering-based techniques.

Fig. 5. Pictorial view of some X-ray Imaging techniques, in comparison with optical and electron microscopies. Reprinted with permission from Ref.
[222].
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2.2. Scattering from atoms –Thomson and Rayleigh scattering

Scattering of an x-ray photon by free or bound electron is a quantum mechanical process. In the case of free electron, the
scattering process (the Compton scattering) is incoherent, i.e., the phase of the scattered wave is random and the scattered wave only
increases the background. The scattering from the bound electron can be described within quantum theory as well [223–228] (some
citation). However if we restrict ourselves to elastic scattering and if the energy of the scattered photon is far from the energies of the
electron transitions in the scattered material (in particular, ionization energies of various electron states in the atoms), the classical
approximation (the Thomson scattering) can be used. In this approximation, the differential cross-section of the scattering is:

=d
d

r C ,e
2 2

(1)

where

= ×r e
mc4

2.818 10 me
2

0
2

15
(2)

is the classical electron radius (electron scattering length) and

= =C sin
1 for S polarization

cos(2 ) for P polarization (3)

is the linear polarization factor (2Θ is the scattering angle). This factor depends on the polarization of the incoming radiation; φ is the
angle between the polarization vector of the incoming radiation and the vector r r'. In the S polarization, the polarization vector Ei

is perpendicular to the common plane of ki and r r' (scattering plane), and sin φ = 1. In the P polarization Ei lies in the scattering
plane and =sin cos(2 ). The polarization direction of the scattered wave is parallel to the projection of Ei into the plane perpen-
dicular to the propagation direction i.e. to r r'. In many x-ray scattering experiments the primary x-ray beam can be assumed fully
non-polarized; in this case the scattered radiation is an incoherent superposition of S and P components. Therefore, the scattered
intensity contains the average of the squares of the C values for these two linear polarizations

+1
2

[1 cos (2 )]2
(4)

which is usually called polarization factor. The fact that the scattering electrons are bound in electron shells around an atom core
plays a role if the photon energy is close to the ionization energy. In this case, the scattering cross-section is corrected by dispersion
(Hoehnl) corrections – see below.

The wave scattered by an atom can be described as a coherent superposition of waves scattered by individual electrons.
Let us introduce the scattering vector or wave vector transfer qas the difference between incident (ki) and scattered (ks) wave

vectors: =q k ks i. Since the scattering process is assumed elastic, its modulus q is the following function of the wavelength λ and of
the scattering angle θ:

= = =qq k| | 2 sin 4 sin (5)

Let us consider now scattering from a single atom. The amplitude of the wave scattered from an atom equals the amplitude of a
wave scattered from a free electron lying in the center times the atomic scattering factor

=q r rf ( ) d ( )e q r0 3 i .
(6)

Obviously, we completely neglect scattering from the atomic nucleus, which is (except for special “resonant” cases) indeed
negligible.

The atomic scattering factor, or atomic form factor, is maximum at θ = 0 ( = =f q Z( 0)0 |e|), i.e. in the forward direction, where
the scattered waves add all in phase, and coincides with the atomic number (see Fig. 6 for a comparison between silicon and carbon).
In the whole q range, f q( )0 decreases monotonically as a function of q and thus of the scattering angle. At q , =f q( ) 00

because of the destructive interference to the integral (6) of the electron density r( ), coming from different positions r in space. It is
worth noting that, for an isolated atom, the electron density ρ(r) can be assumed isotropic in an atom in a ground state so that its
atomic scattering factor is a real function of the length q = |q| of the scattering vector.

In summary:
The scattering factor depends on both q and λ:

• For a fixed λ: f 0 decreases monotonically with qi.e. with the scattering angle; consequently, the scattering factor in the small angle
X-ray scattering (SAXS) range (few degrees), due to the loosely bound valence electrons, is higher than in the wide angle X-ray
scattering (WAXS), due to the tightly bound core electrons.

• For a fixed q: the smaller λ the smaller f 0, meaning the smaller the wavelength the lower the contribution to the coherent
scattering.

If the photon energy is close to the ionization energy of any electron state in the atom, i.e. if the energy is close to an absorption
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edge [229,230], the correction of the Thomson atomic scattering factor (the dispersion correction the Hoehnl correction) becomes
important. In the first approximation, the Hoenhl correction can be expressed as a complex function of the photon energy =E so
that the complete expression for the atomic scattering factor is:

= + +f q E f q f E f E( , ) ( ) ( ) i ( )0 0 (7)

The values of the real and imaginary dispersion corrections f E f E( ), ( ) can be found in the literature or on various web
databases [231–234]. It is worth mentioning that these functions are not independent and they are mutually connected by Kramers-
Kronig integral transformation [235,236]. In Fig. 7 we present these functions for Mn for energies around the Mn K-absorption edge.
At the absorption edge, the real part of the dispersion corrections exhibits a steep dip, while the imaginary part steeply increases. This
increase is manifested by a step-like increase of x-ray absorption, due to the opening of the photoelectric channel; this effect is called
absorption edge.

The neighborhood of an atom affects its scattering factor especially in the energy range just above an absorption edge. If the
photon energy is larger than the ionization energy of an electron, the photon absorption results in the emission of a photoelectron.
The interaction of the photoelectron with the neighboring atom affects the absorption cross-section and consequently modifies the
functions f E f E( ), ( ), see Fig. 8 for the GaAs case. This effect is used in various x-ray absorption spectroscopy methods (EXAFS
[68,237–240], XANES [69,241–244], DAFS [245,246]), the description of which will be briefly provided in section 3.2.) for the
electric susceptibility determines also the index of refraction n of x-rays, using the well-known formula

= + = rn r1 1 ( )
2

e
(8)

which contains the electron density averaged over a volume much larger than the crystal unit cell (or larger than the inter-atomic
distances in case of amorphous materials). Taking into account the dispersion corrections in Eq. (8), the refraction index is
[73,247–249]:

= + + +n r n Z f E if E1
2

[ ( ) ( )] 1 i
j

j j j j

2
e ' ''

(9)

Fig. 6. Atomic scattering factor for silicon and carbon. Previously unpublished figure.

Fig. 7. Real (blue) and imaginary (yellow) Hoehnl dispersion correction of Mn calculated in the neighborhood of the Mn K-absorption edge
(6539 eV – vertical dotted line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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where nj is the density of atoms of type j (number of atoms per unit volume), Zj is its atomic number, and f f,j j
' '' are its dispersion

corrections. It is worthy to note that = <nRe( ) 1 1 and > 0.
As an example, we present here the energy dependences of β and δ for GaAs in the vicinity of the absorption edges GaK and AsK

(Fig. 8). An absorption edge, i.e. a steep increase of β corresponds to a narrow dip in δ; the functions E( ) and E( ) are connected by
the Kramers-Kronig transformation [235,236]. Between the edges the functions E( ) and E( ) can be approximated by E 2 and E 3,
respectively [250].

3. Scattering from molecules and crystals

3.1. Scattering from molecules – molecular morphology

The scattering factor of a molecule, also called molecule form factor [250], is computed by taking into account the scattering of
all the electrons in all the atoms of the molecule, and considering that the atoms sit at precise relative positions:

= =q r rF f q( ) d ( )e ( )eq r q r

n
n

mol 3 mol i Â· i Â· n

(10)

Here we denoted r( )mol the electron density belonging to all atoms constituting the molecule, the sum is running over the atoms in
the molecule, and f q( )n is the atomic form factor of the n-th atom, see Eq. (6).

Let’s consider the C60 fullerene molecule in Fig. 9. The molecule form factor, here shown, is computed two-dimensionally (2D) for
specific conditions: λ = 1 Å, detector pixel size = 200 µ, linear detector size = 20 cm; sample-to-detector distance = 5 cm (WAXS)
or 100 cm (SAXS). The 2D molecular form factors has a complex electronic distribution: if computed at few cm distance from the
sample (Fig. 9b) disclose atomic information (WAXS range), if computed at 100 cm distance or more (Fig. 9c) contains only nanoscale
information (SAXS range), as marked by the dotted white circles.

Scattering from an ensemble of N molecules can be described within the kinematical approximation if we assume that multiple
scattering (i.e. successive scattering of a photon from two or more molecules) can be neglected (this represents an important ad-
vantage in the analysis of the scattering from X-rays with respect to that from electrons) [251–253]. The scattered wave is then
created by a superposition of spherical waves originating from different molecules. If, for simplicity the far-field limit is assumed not
only for a single molecule, but also for the whole molecule ensemble (i.e. the entire “sample” is smaller than the first Fresnel zone) we
obtain the following simple formula for the scattered wave

=
=

q qE KE F( ) ( )e q R
s

j

N

ji
1

mol i Â· j

(11)

where Fj
mol and Rj are the scattering factor and position vector of the j-th molecule. K is the multiplicative factor

=K r
R

Ce kR
e

i

(12)

Usually, our irradiated sample volume contains a very large number N of randomly placed molecules. Therefore, the scattered
intensity is expressed as a huge double sum of all molecules. In the following we assume that the sample volume is so large that all
possible local configurations of molecules are present in it. In other words, any change of local positions of the molecule would result
in a negligible change of the scattered intensity. Therefore, the scattered intensity can be considered averaged over an infinite
number of local configurations of N molecules:

Fig. 8. Real (δ, blue) and imaginary (β, red) parts of 1 – n calculated for GaAs in the vicinity of the absorption edges GaK and AsK (vertical dashed
lines). The dotted lines show the power laws E 2 (blue) and E 3 (red), respectively. Previously unpublished figure. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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(13)

where the averaging runs over the positions of the molecules and over all other molecular degrees of freedom (orientation, con-
formation, etc). In most cases we can assume that the random molecule positions are not statistically correlated to the molecular
degrees of freedom, so that the averaging can be factorized. After some algebra we obtain the following expression for the ensemble-
averaged scattered intensity:

= +q q q q qI K I N F F F G( ) { [ | ( )| | ( ) | ] | ( ) | ( )}s
2

i
mol 2 mol 2 mol 2 (14)

where

=
= =

qG ( ) e
q R R

j

N

j

N

1 1

i Â·

pos

j j

'

'

(15)

is the correlation function of the molecule positions.
In a real experiment the primary X-ray wave is only partially coherent so that it cannot be described by an ideal plane wave. In

this case, the equations must be reformulated taking into account the mutual coherence function (MCF) of the primary wave. For
simplicity, let us restrict now to an ideally monochromatic partially coherent wave. The MCF is then defined as

=r r r rE E( , ) ( )[ ( ')]i
'

i i field (16)

where the averaging is performed over all microstates of the incident x-ray field. Let us assume that the incoming field is statistically

Fig. 9. (a): experimental set-up allowing to collect simultaneously WAXS and SAXS. (b): form factor at 5 cm sample-detector distance (WAXS range).
(c): form factor at 100 cm sample-detector distance (SAXS range). The form factor has been computed with the program nearBragg by James Holton,
available for the scientific community at the web page http://bl831.als.lbl.gov/~jamesh/nearBragg/.
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homogeneous, i.e. =r r r r( , ) ( )i
'

i
' , then the ensemble-averaged scattered intensity can be expressed as:
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(17)

where we have expressed the primary beam as a random superposition of many plane wave components with various wave vectors k

=r r k k
k

( ) d ( )e r rk
i

'
2 0

2 i
i Â·( )'

(18)

Deriving Eq. (17) we made a natural assumption that the averaging fieldover all microstates of the incident field is independent
from the averaging pos,mol over the microstates of the sample. From Eqs. (17) and (18) it follows that in the case of a partially
coherent primary wave the scattered wave is expressed as a convolution of the Fourier transformation of the MCF of the primary
beam with the reciprocal-space distribution of the scattered wave for an ideally coherent primary field.

In an usual experimental arrangement the irradiated sample volume is much larger than the coherence width and/or length of the
primary radiation so that the irradiated volume can be described as many coherently irradiated volumes (CIVs). The waves scattered
from the particles (molecules) within one CIV interfere, while the waves stemming from different CIVs have random phases and
therefore their interference disappears due to averaging field over all microstates of the primary wave. Therefore, the measured
radiation can be expressed as incoherent (intensity) superposition of the waves stemming from various CIVs. Since different CIVs
contain different microstates of the sample, the measured signal is averaged pos,molover the sample microstates as well.

In order to investigate one microstate of the sample, the irradiated sample volume must contain one CIV, i.e. the cross-section of
the primary beam must be comparable to its coherence width and the primary beam must be (almost) fully coherent. This so called
coherent diffraction or coherent diffraction imaging (CDI) can be realized on synchrotron sources using a very narrow primary beam
(see §6.3).

Monodisperse systems consisting of identical molecules dispersed in a buffer (such as water) can form a very diluted (gas-like) or a
more correlated system (liquid-like), as depicted in Fig. 10a and b, respectively. This difference offers a practical way to determine
the form factor (Fj

mol) of a specific molecule.
In a gas-like system the correlation of the molecule positions can be completely neglected, i.e.

Fig. 10. (a): system of diluted (gas-like) BSA molecules. (b): system of correlated (liquid-like) BSA molecules. (c) SAXS profiles for 3 mg/ml system
(green line), 25 mg/ml system (red line), infinite dilution (black curve). (d) as part (c) in an extended q region. Previously unpublished figure. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(19)

and =qG N( ) . Then, the scattered intensity is

=q qI K I N F( ) | ( )|s
2

i
mol 2 (20)

i.e. proportional to the average of the square of the scattering factor of a single molecule.
When a gas-like system is needed, concentration must be decreased until the inter-molecular scattering can be neglected. The way

to control this contribution is by monitoring the SAXS pattern at extremely low scattering vectors: infinite dilution is identified as the
black curve in Fig. 10c. At higher concentration the mean correlation distance between molecules is higher and affects the low angle
scattering and the curve deviates from the back profile in Fig. 10c.

For liquid-like systems (Fig. 10b) Eq. (14) has to be used, i.e. the scattered intensity depends both on the molecule structure factor
and on the correlation function of the molecule positions.

Fig. 10d shows the difference in a wider scattering range between the scattering curves of a more (green line) and a less diluted
(red line) system containing the same Bovine Serum Albumine (BSA) molecule at increasing concentrations. In very diluted solutions,
the interaction among molecules is negligible and the information which is encoded in the scattering curve is only morphological
(size and shape of the molecule, alias form factor, and molecular weight).

3.2. Scattering from crystals – Bragg law

Whenever the correlation among atoms/molecules increases and the relative distance between them remains constant (i.e.
periodic) along nanometric or micrometric distances we are dealing with a crystal. Hard X-rays have wavelengths λ = 0.1–2 Å,
representing a range of distances comparable to the typical crystalline interatomic distances (2 Å) or one order of magnitude smaller
(0.1 Å); they are consequently an appropriate radiation to investigate the atomic structure of matter. X-rays are first scattered by the
electronic cloud of each atom/molecule. The diffused secondary waves, due to the periodic atom/molecule positions, interfere
constructively or destructively along specific directions, as depicted in Fig. 11. Indeed, the word “diffraction”, which is the com-
bination of scattering and interference, originates from the Latin word “diffrangere” which means “to break in more parts”. The
wavefront breaks in the intensity maxima as a consequence of the interference of the scattered secondary waves, as shown in Fig. 11.
As explained in §2, different diffraction regimes can be defined comparing the propagation distance L of the diffracted wavefront to
the Fresnel distance =d dF

2 where d is the size of the scattering object. For L ~ dF (near field, Fresnel regime) only a small portion
of the scattered secondary waves (in the proximity of the scattering sample) has the possibility to interfere. For L ≫ dF (far field,
Fraunhofer regime) all secondary waves, have the possibility to interfere.

X-ray Bragg diffraction [189,190,254] is the result of the interference among the secondary waves produced by the scattering
between X-rays and atoms/molecules in a crystal, and holds in a Fraunhofer diffraction regime, as the sample to detector distance is
macroscopic. The total scattered radiation, arising both from the elastic (Rayleigh) and inelastic (Compton [255] and photoelectric
effect [256]) scattering events, which occur at different atoms in a material, produces the observed pattern. The effect of the elastic
Rayleigh scattering gives rise to the prominent Bragg reflections: intensity maxima along specific angular directions which depend on
the crystal unit cell dimension and atomic content.

The theoretical description of X-ray scattering starts from Eq. (13) or Eq. (17) (for ideally coherent or incoherent primary wave,
respectively). We assume an ideal crystal, therefore the structure factors qF ( )j of the molecules or other structure units (primitive unit
cells) are identical and the position vectors of these units are integer linear combination of three basis vectors a1,2,3 of the primitive
lattice:

= + +R a a aj j j j,j 1 1 2 2 3 3 1,2,3 (21)

The scattered intensity then reads

Fig. 11. X-rays are scattered by the two atoms (bright spots in the left bottom corner). Interference occurs forming destructive (black) and con-
structive (bright) zones.
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(22)

Here the symbol Ω denotes the crystal volume. Thus, the scattered intensity is a product of two terms:

1. Square of the structure factor of the primitive unit cell qF ( ); this factor depends on the positions of the atoms in the unit cell and
does not depend on the arrangement of the cells.

2. Square of the geometrical factor (lattice sum) =qG ( ) j containing the positions of the cells and not depending on the atom
positions within the cell.

We define the reciprocal lattice with the basis vectors b1,2,3 obeying the orthogonality relation to the basis vector of the primitive
lattice =a b. 2j k j k, . Then the geometrical factor can be obtained in the form

=q q gG ( ) ( )
g

FT

(23)

where = + +g b b bg g g g,1 1 2 2 3 3 1,2,3 are the vectors of the reciprocal lattice and

=q r r( ) d ( )e q rFT 3 i .
(24)

is the Fourier transformation of the shape function of the crystal r( ) (which is unity in the crystal volume and zero outside it). Thus,
the geometrical factor equals the sum of the Fourier transformations of the crystal shape functions centered in all points of the
reciprocal lattice. Explicit expression of the geometrical factor exists only for the simplest crystal shapes.

In Fig. 12 we present a simple sketch demonstrating the geometrical factor as a superposition of individual “clouds”, which
illustrate the Fourier transformation of the shape function (Fig. 12a). The Ewald sphere [257] is represented by the red dashed circle,
the intersections of this circles with the “clouds” determine the ending points of possible wave vectors ks of the scattered wave.

If the scattering vector q is close to a chosen reciprocal lattice vector g= h, then in the sum in Eq. (23) all terms with g h can be
neglected (so called two-beam case) and the geometrical factor equals the Fourier transformation of the crystal shape. Unfortunately,
this approximation cannot be used in the case of small crystals, since the overlap of the functions FT centered in neighboring
reciprocal lattice points cannot be neglected. The geometrical factor is a very rapidly varying function of q. A maximum of the
geometrical factor appears if the scattering vector equals any of the reciprocal lattice vectors: =k k q gis .

From the theory of reciprocal lattice it follows that the length = + +g b b bh k l| | 1 2 3 of a reciprocal lattice vector is =g d| | 2 hkl,
where dhkl is the interplanar distance, i.e. the distance of the crystallographic planes with the h, k, l Miller indexes [258]. Then using
Eq. (5) we obtain the famous Bragg’s law [189,190,254] connecting the interplanar distance with the scattering angle, called the
Bragg angle B in this case:

=d2 sinhkl (25)

The interplanar distances of the crystal are related to the unit cell by simple formulae for each crystal system (see International
Tables of Crystallography).

For interplanar distances at the atomic scale (i.e.dhkl = 5 Å) and at the nanoscale (i.e.dhkl = 50 Å), and for a wavelength λ = 1 Å,
the Bragg peaks are typically registered at 2 ~ 11.48° (wide angle x-ray diffraction, WAXD) and at very low angles 2 ~ 1.15° (small
angle x-ray diffraction, SAXD), respectively. This explains why X-ray diffraction is a multiple length scale characterization tool which
is efficiently used to study both atomic and nanometric order in crystals. At the same length scales, if matter is not crystalline or
alternatively if atoms/molecules do not occupy periodic positions in space, we should not talk of diffraction anymore but simply of

Fig. 12. (a) Modulus of the FT of the shape function, ΩFT(q). (b): Illustration of the geometrical factor, as a superposition of individual “clouds” (red
colored) positioned at the reciprocal lattice points (yellow spots), which illustrates the Fourier transformation of the shape function, and the Ewald
sphere (dashed line). Previously unpublished figure. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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scattering or diffuse scattering. In these cases, it is correct to define them wide angle x-ray scattering (WAXS) and small angle x-ray
scattering (SAXS). For further details see §3.4.

The Bragg law cannot predict the relative intensity of the diffraction maxima, but only the peak position for a specific crystal
(when dhkl are known).

If the diffracting crystal is laterally very large, the Fourier transformation of the crystal shape function q( )FT is represented by a
vertical, laterally very narrow pencil (crystal truncation rod – CTR). Then, the lateral diffraction condition is valid:

=q k k gs i (26)

i.e. the difference of the lateral components of the scattered and primary wave vectors equals the lateral component of a reciprocal
lattice vector. The lateral diffraction condition is illustrated in Fig. 13.

Similar image of the geometrical factor is obtained if we consider absorption of the primary and scattered wave. If the absorption
is strong enough, only a thin surface layer of the scattering crystal is irradiated, and the Fourier transformation of the shape function
of the irradiated part of the sample gives rise to the CTR as well.

The structure factor qF ( ) is the Fourier transform of the electron density of atoms belonging to one primitive unit cell (or to one
mole). It is a complex function which depends on the atomic scattering factor of the atoms in the unit cell (contributing to the
modulus) and on the actual relative position of the atoms (encoded in the phase term q rexp( i Â· j)). Every crystal works as a signal
amplifier: more unit cells form the crystal (more extended crystalline domains) more intense and more concentrated the diffracted
beams will be (therefore easily measurable). The coherent length of the crystal (ξ), namely the crystalline domain size, is derived by
the analysis of the peak widths: the larger the peak width the smaller the crystalline domains. At the limit of complete loss of long-
range order (amorphous) a featureless diffraction curve, with few broad bumps, is registered.

Fig. 14 displays the Bragg law defining only the peak positions (Fig. 14a), the atomic (Fig. 14b) and structure factors (Fig. 14c)
needed to compute the intensity diffracted by a silicon crystal.

It is worth highlighting that the accuracy in the determination of the lattice parameter, precious information encoded in the Bragg
law (25), depends on the number of terms in the lattice sum, see Eq. (47). Indeed, if the crystal coherency is ξ = N a, where N is the
number of unit cells and a the unit cell size, the accuracy in the lattice parameters is λ/N. The smaller the crystal coherence (the
lower the crystallinity) the less reliable the crystal periodicity derived by the Bragg law [259].

The Bragg law [189,190,254] is equivalent to the Laue equation [260] which states that constructive interference will occur
provided that scattering vector or wave transfer vector q is a vector of the reciprocal lattice ( = =g q k ks i) [261]. In other words,
interference is constructive at the perpendicular bisecting plane (Bragg plane) between two reciprocal lattice points. Note that in the

Fig. 13. Lateral diffraction condition; the blue spheres represent the reciprocal-lattice points, the Ewald sphere is indicated by red dashed circle.
Previously unpublished figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 14. (a): peak positions computed for λ = 1.5405 Å from the Bragg law for a silicon crystal. (b): atomic scattering factor (atomic form factor) of
silicon. (c): intensity diffracted by a silicon crystal. Previously unpublished figure.
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original real lattice, these perpendicular bisecting planes are the planes we use to construct the Wigner-Seitz cell. For the neighbors
nearest to the origin, the Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin zone [261–264].

The concept of the Brillouin zones, which is used mainly in the theory of electron gas in solids, is suitable also for the description
of X-ray diffraction. In the diffraction maximum the diffraction condition =g k ks i is fulfilled and the total wavefield in the
diffracting lattice can be written in the form of the Bloch waves

= +E r E E( ) e ( e )k r g r
i s

i Â· i Â·i (27)

where the wave vector ki is chosen from the first Brillouin zone and = =k k k| | | |i s .
Let’s compute a simple crystal lattice made of one unit cubic cell, with C60 molecules placed at the corners of a cube and at the

center of each face of the cube (ICSD number 74523), as described in Fig. 15a. The structure factor modulus of this single face-
centered cubic (f.c.c.) cell lattice, computed along the [111] projection for a λ = 1 Å, detector pixel size = 200 µ, linear detector
size = 20 cm and sample-to-detector distance = 5 cm is shown in Fig. 15b. If we add other cells, without any lattice coherence but
randomly assembled in direct space (Fig. 15c), the corresponding diffraction pattern (Fig. 15d) is obtained by the incoherent sum of
all contributions. The random relative rotation of the unit cells in direct space explains the collapse, in reciprocal space, of the
diffraction spots of Fig. 15b into the 2D rings of Fig. 15d. We can compute a more complex crystal lattice made of 2 f.c.c. unit cells
along each crystal axis, for a total of 2×2×2 unit cells (Fig. 15e). The corresponding structure factor modulus, computed along the
[111] projection for a λ = 1 Å, detector pixel size = 200 µ, linear detector size = 20 cm and sample-to-detector distance = 5 cm, is
reported in Fig. 15f, which looks almost identical to Fig. 15b apart for the sharper diffraction spots. The assembly of 2×2×2 unit
cells crystals, randomly oriented in direct space is shown in Fig. 15g; the corresponding diffraction pattern obtained by the incoherent
sum of all contributions is displayed in Fig. 15h. These 2D rings can be reduced to 1D profiles by integration along the azimuthal
angle, which are reported in Fig. 15i for different crystal coherency (ξ = N a, here N is the number of cells): red for N = 2, green for
N = 10 and black for N = 30. The crystal coherency reflects itself in the full-width of the diffraction peaks: the smaller the crystal
coherence the broader the peaks. The two extreme cases identify here: a small nanocrystal (domain size ~ 4 nm) made of 2×2×2
unit cells and a larger nanocrystal (domain size ~ 60 nm) made of 30×30×30 unit cells.

3.3. Scattering from nanocrystals, polymers or amorphous materials

As stated in the introduction a complex material can be today an assembly of a polymer with inorganic nanocrystals, or a molecule
coating a gold core, etc. Verbatim from Egami & Billinge’s book [259] “… polymers are structurally highly complex, with millions of
atoms constituting chain molecules, which are assembled in a complex morphology, partly crystalline and partly amorphous…complex ma-
terials have a structure that locally deviates from the perfect crystal structure, even when they may appear superficially crystalline. In real life
as well a complex person is always more interesting than a simple one, since such a person is unpredictable. A perfectly periodic crystal may be
beautiful in some sense, but is totally predictable and can be extremely boring; even the most beautiful theme of Mozart would become boring if
it were repeated a million times! Modern complex materials, on the other hand, are far from boring…. the more directed the functionality of a
material, the greater its structural complexity”.

When we cannot rely on a distinct periodicity, we cannot compute the crystal diffracted intensity as previously defined in Eq.
(47). In these cases (amorphous, magic clusters or noble metal nanoclusters, polymers with partly crystalline and partly amorphous
sections) we have to define a continuous structure factor which computes the total scattering across the entire sample extension,

Fig. 15. (a): unit cell made of C60 molecules placed at the corners of a cube and at the center of each face of the cube (ICSD number 74523). (b): 2D
diffraction pattern along the [111] projection of the f.c.c. unit cell shown in (a). (c): assembly of unit cells, randomly oriented. (d) 2D diffraction
pattern of the unit cells assembly shown in (c). (e) crystal lattice made of 2×2×2 unit cells, each unit cell identical to (a). (f) 2D diffraction pattern
along the [111] projection of the crystal lattice made of 2×2×2 unit cells shown in (e). (g): random assembly of unit cells, with each unit cell
identical to (e). (h) 2D diffraction pattern of the crystal lattice made of 2×2×2 unit cells shown in (g). (i): 1D diffraction profiles of the unit cells
assembly shown in (h): red for 2×2×2 unit cells, green for 10×10×10 unit cells, black for 30×30×30 unit cells. Intensities have been rescaled to
the same maximum to better appreciate the differences. Previously unpublished figure. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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without relying on any periodicity rules. It takes into account both Bragg and diffuse intensity. The continuous structure factor is:

=
V

q r r( ) 1 d ( )e q r

0

3 i ·
(28)

whose squared amplitude, S q( ), is proportional to the measured intensity averaged over all orientations of the local atom ar-
rangements:

=S q q( ) | ( )|2 orient (29)

The Fourier transform of S q( ) gives [50,265]:

– Reduced pair distribution function

= =G r r P r r q S q qr( ) 4 ( ( ) 1) 2 d [ ( ) 1] sin( )0
0 (30)

– Pair distribution function - PDF

= =P r g r
Nr

r r( ) ( ) 1
4

( )
k j

jk0 2
orient (31)

– Pair density function

=r P r( ) ( )0 (32)

– Radial distribution function

=R r r P r( ) 4 ( )2
0 (33)

Here, 0 is the number density of atoms in the system of N atoms; δ is a Dirac delta function; =r r r| |jk k j is the distance separating

Fig. 16. Part (a): graphical representation of the q vs. 2θ relationship for different λ values including the most used laboratory tubes and some
typical hard-X-rays values used at the synchrotrons. High q values can be obtained at synchrotron sources using low λ. Part (b): Scheme of the radial
PDF R(r). The radial PDF quantifies the correlation between the particles within a given system. In particular, R(r) measures the average probability
of finding a particle at a distance r away from a given reference particle. The general algorithm to evaluate R(r) involves the determination of the
number of particles within r and r + dr (circular gray shell in the figure) from the reference particle (depicted in red). In a sample showing short-
range order, the R(r) function shows a few oscillations before stabilizing at R(r) = 1 which correspond to local deviations from the isotropic
condition, and are associated to the first coordination shells occurring at well-defined interatomic distances. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the kth from the jth atoms. These functions allow reconstructing the structure of the investigated sample from the spatial correlations
between pair of atoms (see Fig. 16).

When the scattering atoms/molecules adopt all orientations to the X-ray beam, only spherical average of the scattered intensity is
experimentally accessible. Discretizing the sum, the diffracted intensity is:

=
= = = =

I q f q f q f q f q
qr

qr
( ) ( ) ( ) e ( ) ( )

sin( )

k

N

j

N

k j
k

N

j

N

k j
jk

jk

r r

1 1

i.( )
orient

1 1

k j

(34)

This is the well-known Debye formula [266,267] and holds for Small (SAXS) and Wide (WAXS) Angle X-ray Scattering data. Note
that this approach to analyze the scattering data is not restricted to amorphous samples but may be also be applied to crystalline
(nano)materials, as shown in the following example, reported in Figs. 17 and 18. The data resolution (dmin), for whatever scattering/
diffraction curve, depends on the maximum scattering vector (qmax) with a significant signal to noise ratio, i.e. on the maximum angle
(θmax, at given λ):

= =d p q l sin q2 (2 ( ))min max max (35)

where the last equality derives from Eq. (25). SAXS data have a nanometric resolution and are therefore used to access information at
the nanoscale, whereas WAXS data can reach atomic resolution (interatomic distances). SAXS data, when spatial correlations are
negligible (gas-like dispersion), do not contain any structure information but only morphological ones (shape and size of the molecule
or nanosized scattering object), as previously discussed, see Fig. 10.

The power of the PDF analysis is to extract structural information, independently of the crystallinity of the sample, especially
important for so many hybrid or amorphous materials. The final resolution of the reconstructed structure will depend on the
maximum q value of the scattering data, which is a function of the wavelength of the X-ray beam and of the maximum scattering
angle in the recorded data. Typically, high quality data collections up to q= 20–30 Å−1 are needed, requiring mandatory the use of
very short λ, see Eq. (35). For standard Cu Kα (λ = 1.54 Å) and Mo Kα (λ = 0.71 Å) tubes a collection up to 2θ = 140° results in
q = 7.7 and 16.6 Å−1, respectively. Usually PDF studies are performed using synchrotron sources (see §6.1.2.) that provide high X-
ray fluxes even at short λ. As an example, at λ = 0.5, 0.4, 0.3 and 0.2 Å, q values as high as qmax = 23.6, 29.5 and 39.4 and 59.0 Å−1,
respectively, can be reached for a data collection up to 2θ = 140°. This means to give access to dmin = 0.27, 0.21, 0.16 and 0.11 Å
length scales in direct space, respectively [268]. This is the resolution needed specially to study amorphous materials.

Let’s suppose to analyze the same C60 molecules both dispersed in a buffer to form a diluted gas-like suspension (Fig. 17a) or
organized in the molecular crystal according to a regular face centered cubic (f.c.c.) lattice, as shown in Fig. 18A. Let’s suppose to
have collected both the SAXS data from the solution (Fig. 17b) and the wide angle diffraction pattern (WAXS data) from the crys-
talline sample (Fig. 18b), for different crystal coherence (red for 2×2×2 unit cells, green for 10×10×10 unit cells, black for
30×30×30 unit cells, as already described in Fig. 15h). The analysis of the SAXS profile (Fig. 17B), realized for example with the

Fig. 17. (a) Diluted gas-like suspension of C60 molecules dispersed in a buffer; (b) SAXS data; (c) the pair distribution function (PDF) – P(r).
Previously unpublished figure.

C. Giannini, et al. Progress in Materials Science 112 (2020) 100667

17



GNOM program [269], allows us to extract the pair distribution function (PDF – P(r) - Fig. 17C). Table 1 provides a list of P(r) and
corresponding SAXS profiles for relevant shapes (full sphere, hollow sphere, cylinder, flat disk and dumbell), along with the formulas
linking the gyration radius (Rg) to the main lengths of the object. The radius of gyration represents the effective size of the scattering
“particle” whether it is a molecule, a nanocrystal or nanoparticle, a polymer chain, part of a protein, a micelle, or a domain in a
multiphase system. The P(r) extracted from Fig. 17c clearly allows us to identify the hollow shape of the C60 molecules, and the
gyration radius Rg = 3.71 ± 0.03 Å, derived from analyzing the data, correlates very well with what expected for an external and
internal radii R2 = 4.29 Å and R1 = 2.79 Å of the fullerene molecule [270]. This example shows the typical outcome of a mor-
phological analysis performed by SAXS.

Let’s proceed with the analysis of the wide angle diffraction pattern (WAXS data) from the molecular crystal (Fig. 18B). The
analysis is realized in two steps: (1) extraction by the PDFGETX3 program [271] of the pair distribution function – P(r) – (black
dotted curves in Fig. 18C,D) from the black WAXS data in Fig. 18B); (2) fit of the P(r) data with the PDFGUI program (blue lines in
Fig. 18C and D) [272]. In the P(r) it is possible to distinguish the intermolecular and the intramolecular lattice distances of the C60
f.c.c. crystal [273]. It is worth noting that, in this system, the border between inter and intramolecular distances occurs at about
8Å~2R2, which corresponds to the external diameter of the fullerene molecule. The analysis is reported for the WAXS data computed
for 30×30×30 unit cells (black profile in Fig. 18B). Similar results are found for 2×2×2 and 10×10×10 unit cells. Interestingly,
(200) diffraction from the fcc crystal of C60 molecules, at 0.57 Å-1, is missing even if the structure factor of a f.c.c. lattice is not zero
for (200). The reason of this extinction is the structure factor of a single molecule C60, which is zero for =q g200. This fact can be
shown by a simple calculation in which we assume that all the electrons in the molecule lie on a spherical surface with the radius R. In
this assumption, the structure factor of the molecule is:

=F q Z qR
qR

( ) sin( )
(36)

where Z is the total number of electrons in the fullerene molecule. The lattice parameter of the fcc fullerene crystal is a= 1.411 nm,
and the C60 radius is R = 0.35 nm. In the (200) diffraction maximum = =gq a| | 4200 holds and the structure factor is therefore
very small (F Z 0.007).

Fig. 18. (a) C60 molecules organized in a crystal according to a regular face centered cubic (f.c.c.) lattice; (b) WAXS data (red profile for 2×2×2
unit cells, green for 10×10×10 unit cells, black for 30×30×30 unit cells); (c) pair distribution function (experimental is the black dotted curve
and the simulated profile is the blue line) extracted from the WAXS data where it is possible to distinguish the intermolecular and the intramolecular
lattice distances of the C60 f.c.c. crystal. Previously unpublished figure. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3.4. Submolecular and supramolecular study of fibers

SAXS and WAXS techniques are ideal to explore materials with hierarchical order such as, for example, polymer based fibers
[274–276], nanostructured carbons [277], and catalysts with hierarchical pore structure [278–280]. Self-assembly is an increasingly
attractive tool for the fabrication of novel nanomaterials. In this field, self-assembled peptides have received considerable interest
because of their intrinsic biocompatibility, relative simple synthesis and preparation, versatility and functional diversity [281,282].
For example, Diphenylalanine (FF) can self-assemble into well-ordered tubular structures with a long persistence length (~100 μm)
by the combination of hydrogen bonding and π-π stacking of aromatic residues. Diphenylalanine homodimers show a very high
morphological variability depending on the experimental preparation conditions such as solvent, pH or temperature. Moreover,
chemical modifications of the aromatic dipeptide (e.g. the introduction of a thiol group or of a fluorenylmethyloxycarbonyl group)
can alter the self-assembly. Nanotubes, nanowires, nanofibrils, spherical vesicles and organogels are just a few examples of the new
peptide materials based on FF self-assembly [283]. Several applications in biology, nanomedicine and nanofabrication fields (for
tissue engineering, drug delivery, bioimaging and fabrication of biosensors) have been proposed for these nanostructures [283–286].
According to their morphological features, these materials exhibit also mechanical, electrochemical, magnetic or optical (photo-
luminescence and optical waveguide) properties. Moreover, their high thermal, chemical and proteolytic stability provides them the
features for potential applications in industrial fields. Despite the growing literature about FF, only few examples of nanomaterials
obtained by the self-assembling of others aromatic analogues (naphthylalanine, tyrosine, tryptophan) or of long poly-phenylalanines
have been reported until now. Fiber diffraction, registered in SAXS and WAXS regimes, is the prefect tool to explore the nano and
atomic packing of these novel nanomaterials with hierarchical order [275,276]. Fig. 19 refers to the case of a novel peptide building
block composed of six phenylalanine residues and eight PEG units (PEG8-F6), which showed blue photoluminescence both in solution
and at the solid state. The photoluminescence (PL) properties were correlated with the structural organization of the peptide building
block at the micro-, nano- and atomic scale by means of the combination of a micro-probe with SAXS and WAXS techniques. WAXS
and SAXS data were collected at the X-ray MicroImaging Laboratory (XMI-L@b) [287,288] with a beam spot of ~100 µm. Three
length scales were explored in this experiment:

– Micro scale: The PEG8-F6 fiber in Fig. 19a was placed under a micro-focused X-ray beam which allowed to explore different

Table 1
List of SAXS profile and corresponding pair distribution function P(r) computed for relevant shapes (full sphere, hollow sphere, cylinder, flat disk
and dumbell), along with the formulas linking the gyration radius (Rg) to the main lengths of the object. Previously unpublished table.
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micrometric regions marked in red (1), green (2), blue, (3), and orange (4), placed at a relative distance of 200 µm. The WAXS and
SAXS data, collected along the fiber, grouped in Fig. 19b, did not report relevant differences proving the lateral homogeneity of
the fiber.

– Nano scale: SAXS data were acquired placing an 2D detector at about 2 m from the sample.
– Atomic scale: WAXS data were acquired placing a 2D detector at about 10 cm from the sample.

Both WAXS and SAXS 2D data present a high anisotropy in the diffracted intensity, with the typical cross-β diffraction pattern in
the WAXS regime with meridional and equatorial peaks along the fiber axis and perpendicular to it, respectively. The 2D data were
centered, calibrated and folded into 1D profiles and showed in Fig. 19c and d along the meridional and equatorial directions,
respectively. The blue and black lines refer to the SAXS and WAXS data, respectively. The peak positions were identified and
summarized in the table. Remarkable peaks are the meridional and equatorial reflections at 4.8 ± 0.3 Å (m4 in the table of Fig. 19)
and 12.2 ± 0.3 Å (e1 in the table) which correspond to the typical hydrogen bonding distance between β-strands and to the inter-
sheet distance [289]. In the SAXS regime, diffraction was measured only in the meridional direction (m1 in the table). In order to
extract only morphological information (size and shape of the fiber), the equatorial profile was fitted with the GNOM program [290]
(Fig. 19c) to evaluate the nPDF (Fig. 19d), i.e. the PDF at the nano scale. The evaluated nPDF is the typical distribution of elongated
scattering object with gyration radius of Rg = 69 ± 1 nm. Molecular dynamics simulations allowed to model the hexaphenylalanine
formation in aqueous solution and its evolution and stabilization in time, finding the twisted model in Fig. 19g. Simulations were
perfectly in line with the WAXS data (equatorial reflection at ~12.5 Å) and to the SAXS gyration radius.

This is a very didactic example of application of SAXS, WAXS and nPDF analysis to inspect atomic and nanometric structure of
these peptide-based nanomaterials, which profits of the micro-sized X-ray source to explore the lateral heterogeneity of the fiber and
to complete the structural investigation up to the micrometric scale.

Fig. 19. (a) PEG8-F6 fiber as placed under a micro-focused X-ray beam and explored across different micrometric regions; (b) WAXS and SAXS data,
collected along the fiber; (c) 1D WAXS (dark) and SAXS (blue) meridional profiles; (d) 1D WAXS (dark) and SAXS (blue) equatorial profiles; (e)
experimental (dots) and computed (red line) equatorial SAXS profiles; (f) nPDF derived from the analysis of the equatorial SAXS profile in (e); model
the PEG8-F6 fiber resulting from molecular dynamics simulations. Adapted with permission from Ref. [276], copyright Wiley-VCH 2016. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.5. Size, shape, defects analysis

A WAXS profile, registered on randomly oriented nanocrystals, may encode several structural and morphological information:
size, strain, shape, structures, defects [291]. It is worth reminding that the domain size encoded in the WAXS data can differ from the
nanocrystal overall size. Fig. 20A is the HRTEM image of a gold multiple twinned nanocrystal [292]. Clearly the overall shape is a
sphere, but it contains smaller crystalline domains (Fig. 20B). Consequently, both SAXS and WAXS scattering patterns should be
registered to determine nanocrystalline domain size from WAXS and overall nanoparticle shape from SAXS. Their compared analysis
could disclose this relevant difference, if present. Fig. 20C shows the atomic model of nanocrystals with spherical shape and zinc-
blende crystal structure. The corresponding SAXS and WAXS profiles are computed with the Debye function for spheres of increasing
size (a sphere of diameter d = 2 nm – black; d = 10 nm – red; d = 20 nm – green). Fig. 20D shows the atomic model of nanocrystals
with octapod shape and zincblende crystal structure along with the SAXS/WAXS simulations computed for increasing size (octapod
with arms of diameter d and length l: d = 2 nm and l = 10 nm – red; d = 4 nm and l = 10 nm - black; d = 4 nm and l = 20 nm–
green). This comparison clearly shows that for a symmetric shape, as the size increases, all WAXS peaks reduce in width and the
frequency of the SAXS diffraction fringes increases. For a very anisotropic shape, as the octapod, the WAXS peak width is largely
anisotropic and the domain size and shape can be retrieved only by a proper data analysis of the whole spectra. The same information
is also encoded in the SAXS range, when domain size and particle size coincide, but in a less direct and clear way.

In Fig. 21 SAXS and WAXS patterns [293], in conjunction with Debye formula simulations from atomistic models, were used to
complement and extend microscopic studies of anisotropic nanocrystals with monodispersed size. With respect to electron micro-
scopy characterization, SAXS and WAXS data have the intrinsic advantage to contain information which are statistically relevant, as
often needed for many material applications, which can be directly collected also for nanocrystals dispersed in solutions. This
information is averaged on the ensemble of nanocrystals illuminated by the X-ray beam. Conversely, the drawback of the SAXS/
WAXS approach is that once information is obtained in the reciprocal space, structural models in real space are needed to interpret
the data. For these reasons the two approaches, SAXS/WAXS and TEM, support and complement each other.

The importance to extract size and shape information from SAXS and WAXS data of nanoparticles directly in solutions is pretty

Fig. 20. (a) HRTEM image of a gold multiple twinned nanocrystal, reprinted with permission from [292]; (b) spherical shape, marked by the full
line circle, with several smaller crystalline domains, marked by the dotted line sector; (c) atomic model of nanocrystals with spherical shape and
zincblende crystal structure (left) and corresponding SAXS and WAXS profiles (right) computed for spheres of increasing size (a sphere of diameter
d = 2 nm – black; d = 10 nm - red; d = 20 nm – green); (d) atomic model of nanocrystals with octapod shape and zincoblende crystal structure
(left) along with the SAXS/WAXS simulations (right, e–f) computed for increasing size (octapod with arms of diameter d and length l: d = 2 nm and
l = 10 nm – red; d = 4 nm and l = 10 nm - black; d = 4 nm and l = 20 nm– green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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clear for nanomedicine applications. Indeed, scientists dream to have a full control on the size, shape, surface properties and me-
chanical stiffness of their nano-constructs, before deliver them to human body, diluted for example in water, and navigate them
through the circulatory system for therapy or theranostics [294,295]. For samples containing nanoparticles with an unique shape and
with homogeneous size, size and shape can be directly extracted from SAXS and WAXS data. In more complex cases, like bi- or multi-
modal shape distribution and heterogeneous size distribution, shape and size distributions may be reconstructed from an accurate
analysis of the SAXS and WAXS data according to supplementary information coming from independent techniques, such as e.g. TEM.

In the next case [296] the authors studied a random assembly (powder) of nanocrystals with tetrapod shape, realized by the
synthesis of a sphalerite core and four wurtzite arms (Fig. 22A). The aim of the study was not to identify a specific nanocrystal in the
assembly but to study their average structural and morphological properties. Therefore, X-ray diffraction data were collected with a
laboratory diffractometer, exploring millimetric areas. Fig. 22B shows as red dotted lines the experimental X-ray diffraction patterns
collected on three representative nanocrystal samples, CdSe/CdTe, ZnTe/CdTe, and ZnTe/CdS tetrapods, as well as the corresponding
simulated patterns as black solid lines. Depending on the material chosen for core and arms, the X-ray diffraction pattern changes in a
quite significant way. Indeed, when using ZnTe core and CdS arms, the experimental pattern can be correctly described by the
expected wurtzite crystalline CdS phase (the contribution to the diffraction from the central core is practically negligible). On the
contrary, in the combination between ZnTe or CdSe core and CdTe arms, the experimental profile (red dotted curves) cannot be
described by the corresponding CdTe wurtzite crystalline phase. A dampening in the intensities of the 10l (l = 1, 2,3,…) reflections
was clearly observed and was interpreted as the fingerprint of a disordered wurtzite CdTe phase. A similar dampening of the 10l
reflections was found, for instance, by Frey and Boysen [297] for cobalt crystals grown in mixed hexagonal “hcp” and cubic “fcc”
phases; an entire family of reflections, in correspondence of the (10l) planes was missing. Fig. 22C indeed shows electron microscopy
investigation of a single tetrapod. It is remarkable to note the changes of the lattice fringes contrast along the arms of the tetrapod,
which indicates the presence of regions with either different orientations, or structure, or composition. Atomistic model with Debye

Fig. 21. Main parts: SAXS and WAXS patterns from different atomistic models of anisotropic nanocrystals (insets) with monodispersed size. In all
parts the experimental data (scattered circles) are compared with the Debye formula simulations (full red line). Reprinted with permission from ref.
[293] copyright American Chemical Society, 1997. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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function simulations of the X-ray diffraction pattern were therefore computed and screened against the experimental pattern. Ac-
cordingly, the CdTe arms could be better modeled as composed of mixed regions of wurtzite and sphalerite phases in a 3ABA5BCB
stacking sequence (Fig. 22D). (Note that the ABC type of sequences corresponds to a sphalerite region, and the CB sequences cor-
respond to a wurtzite region).

3.6. Correlated scattering clusters

In the previous description, we assumed that the measured signal is averaged over all orientations of the scattering clusters
(molecules, nanoparticles etc). The consequence of this averaging is the fact that the reciprocal-space distribution of the measured
intensity qI ( ) depends only on the modulus q of the scattering vector. Eq. (13) assumes that the positions of individual clusters are not
correlated so that the scattered intensity is proportional to the intensity scattered from a single cluster averaged over all orientations.
This approximation is valid only for much diluted systems, in other cases an interaction between the clusters must be considered,
which results in a correlation in the cluster positions. In this case, Eqs. (14), (15) can be used, where F(q) is the (random) scattering
factor of a single cluster and G(q) is the correlation function of the cluster positions.

Several models can be used for calculation of G(q). Here we mention the Orstein-Zernicke theory [298,299]. Let us define the pair
distribution function g(r) of the clusters as

= = +r r r r rg
N

( ) ( ) 1 1 ( ( ))
j k

j k
0 0

(3)

(37)

and the total correlation function =r rh g( ) ( ) 1. Ornstein and Zernike divided the total correlation function in two parts, the first
describing “direct” interaction between the clusters in points 0 and r and the second covering all indirect interactions mediated by all
other clusters in the sample:

= +r r r r r rh c c h( ) ( ) d ( ) ( )0
3 ' ' '

(38)

The Fourier transformation of h(r) which occurs in the formula for the scattered intensity can be directly obtained as

Fig. 22. (a) Random assembly of nanocrystals with tetrapod shape realized by the synthesis of a sphalerite core and four wurtzite arms; (b)
experimental x-ray diffraction profiles (dotted red curve) and fitted profile (black full line); (c) electron microscopy investigation of a single
tetrapod; (d) Debye function simulations of the 3ABA5BCB atomistic stacking sequence, which best fitted the X-ray diffraction pattern of the
defected structures. Reprinted with permission from ref. [296], copyright American Chemical Society, 2009. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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= =q q q
q

h
N

G c
c

( ) 1 1 ( ) 1 ( )
1 ( )0 0 (39)

The Percus-Yevick approximation [300] uses the following closure relation in order to solve the Ornstein-Zernike integral
equation

= +r r rc h w
k T

( ) [ ( ) 1] 1 exp ( )
B (40)

where w(r) is the potential energy of a pair of clusters. If, for instance, the clusters are approximated by uniform hard spheres, then

= >rw r D
r D( ) 0for

for (41)

where D is the cluster diameter. Inserting Eq. (40) into Eq. (38) and using Eq. (41), the resulting equation for c(r) can be solved
analytically. The final formula is quite cumbersome and it can be found in [301,302].

In Fig. 23A we present the function h(q) simulated by the Pecrus-Yevick approach and using a Monte-Carlo simulation. In the
simulation we used the radius of 3 units of the non-penetrating hard spheres, N = 2000 spheres were randomly placed in the
simulation cube with the edge L= 1000 units. From figure it is obvious that both approaches yield almost same results. The function

Fig. 23. (a) h(q) of a random ensemble of uniform hard spheres simulated by the Pecrus-Yevick approach of the Ornstein Zernicke theory (line) and
using a Monte-Carlo simulation (dots); (b) one-dimensional short-range order model of particle ordering; (c) functions h(q) simulated within the
one-dimensional SRO model for various root-mean square deviations L of the particle distances. The parameters of the curves are the values of

LL . The curves are shifted vertically for clarity. The vertical dotted lines denote the positions of the averaged one-dimensional reciprocal lattice
points =q n L2n ; (d) Sketch of the one-dimensional long-range order model; (e) The functions h(q) simulated within the one-dimensional LRO
model for various rms deviations U of the particle displacements and for =N 10. The parameters of the curves are the values of LU . The curves
are shifted vertically for clarity. The vertical dotted lines denote the positions of the averaged one-dimensional reciprocal lattice points

=q n L2n ; (f) scattering curves calculated for a one-dimensional chain of spheres, the spheres are arranged according to the SRO model (see the
main text for all details). The difference between the DA and LMA models are obvious. Previously unpublished figure.
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h(q) exhibits side maxima; however these maxima are not connected with any mean distance between the spheres and they cannot be
interpreted as a sign of an ordering of the positions of the spheres.

In many experimental cases the ordering of the positions of the clusters (nanoparticles) is stronger than that following from the
fact that the particles do not penetrate. Let us assume for simplicity that the particles create a random one-dimensional chain
according to Fig. 23B.

The random vector connecting the centers of particles n-1 and n is denoted Ln and we assume that the vectors Ln have the mean
value L , and Ln, Lm are statistically independent if n ≠ m. This model is called one-dimensional short-range order model (SRO). In
this model, the function h(q) can be obtained directly

= + =qh L
N

( ) 1 2Re
1

1 1 1
1

, e q L
N

i .

(42)

In the limiting case of very large number of particles (N ) we obtain the paracrystal model [303–305]. Fig. 23C shows the
functions h(q) simulated within the one-dimensional SRO model for various root-mean square deviations (rms) L of the particle
distances L.

The function h(q) exhibits side maxima approximately in the points of the averaged reciprocal lattice of the particles, however
with increasing L the maxima move towards smaller |q|. The widths of the maxima increase with increasing L and they are
approximately proportional to n2, i.e. with increasing order n of the maximum the maximum becomes broader.

In the SRO model the particle “feels” only the neighboring particles so that there are no a-priori defined ideal particle positions.
On the other hand, the long-range order model (LRO) assumes that the particles are displaced by a random vector U from a-priori
defined periodic particle positions (Fig. 23D).

Again, the direct calculation of h(q) is easy within this model:

= + =
=

qh L
N

( ) 1 e , eq L q U

n

N
n2

2

1

i .
2

i .

(43)

Simulated h(q) curves are shown in (Fig. 23E).
In contrast to the SRO model, in the LRO model the width of the satellite maxima are not affected by the random displacements

are inversely proportional to the size NLof the particle chain. The disorder gives rise to a homogeneous background which increases
with increasing U .

It is not easy to generalize the one-dimensional SRO model to more dimensions. A discussion of this problem can be found in
[306]. A combined three-dimensional SRO-LRO model which can be used for the description of the positions of self-organized
nanoparticles in multilayers can be found in [307].

Up to now we considered random positions of the clusters (nanoparticles) and random sizes/shapes of the particles but we ignored
the possibility of statistical correlation of the particles’ sizes and positions. In particular, Eq. (14) was derived assuming that the sizes
and positions of the particles are completely statistically independent. This is so called decoupling approximation (DA) [43], where
the sizes and distance are completely decoupled. In reality, this is the case only for much diluted systems, where the particle
interaction can be completely neglected. For instance, in most random ensembles of particles one can expect that the mean distance
between the particles increases with increasing mean particle size. In local monodisperse approximation (LMA) one assumes that the
sample consists of many small regions with identical particle sizes. Then, the scattered intensity can be calculated as follows:

=
= =
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where qF ( )(size) is the structure factor of a particle with given size (and shape) and
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(45)

is the correlation function of the positions of particles with the given size. This correlation function can be constructed assuming a
suitable ordering model (SRO, for instance), the parameters of this model (mean particle distance and its rms deviation) scale with
the actual particle size. Then, the final averaging over the sizes in Eq. (44) must be performed numerically.

Fig. 23F demonstrates the difference between the DA and LMA models. In this figure, we present the scattered intensities si-
mulated using Eqs. (14) and (44) of a one-dimensional SRO distribution of spheres, the mean sphere radius was =R 2 nm, mean
distance =L 6 nm. We used the rms deviations = 0.35 nmR and = 4 nmL ; in the LMA model we assumed that both the mean
distance L and is rms deviation L are proportional to the local (random) sphere radius R. From the figure, it follows that both
models yield almost identical tails of the scattering curve, however the central parts of the curves including the first-order satellite
maxima differ substantially. The DA model overestimates the diffuse background between the maxima. In many experimental cases, a
weighted average of the DA and LMA curves is a good choice for fitting the experimental data.
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4. Chemical specificity: The role of X-Ray spectroscopies

4.1. X-ray absorption spectroscopies: EXAFS and XANES

X-ray absorption spectroscopy (XAS), including both X-ray absorption near edge (XANES) and extended X-ray absorption Fine
structure (EXAFS), is a powerful tool to investigate the local atomic environment in condensed matter since it couples chemical
selectivity and high resolution at the short distance scale [68,73,237,308–311]. These peculiar features of the technique are ex-
tremely useful in the characterization of nanomaterials which may be made up of a very low number of atoms, often embedded in a
hosting matrix, which can dominate the response of any non-atomic selective characterization technique [21,312,313]. Moreover, as
already discussed, the intrinsic nanometric dimension of the nanomaterials hinders the straightforward application of standard Bragg
approach diffraction techniques which require a long-range order. Finally, the XAS spectrum can provide information on the elec-
tronic structure and local coordination geometry of the absorber atom. Therefore, XAS has been widely applied in the study of
nanostructures, significantly contributing to their characterization at the sub-nm level and to the understanding of the relation
between atomic structure and physical properties [75,314–320].

XAS is based on the acquisition and the analysis of the X-ray absorption coefficient µ(E) as a function of the incident photon
energy E in the region around the absorption edge of an element present in the sample. The region including few eV before and
several eV after the edge is usually called X-ray Absorption Near Edge Structure (XANES [69,241,243,244,321]) for hard X-rays or
(Near Edge X-ray Absorption Fine Structure (NEXAFS [322–325]) for soft X-rays, while the following energy range (up to more than
1 keV after the edge) is the Extended X-ray Absorption Fine Structure (EXAFS) region [68,238–240].

The photoelectric absorption process can be described as a transition between an initial state >i (incident photon of energy
=E and electron in a core orbital with binding energy E0) and a final state >f (core hole and excited electron). If the energy is

lower than E0, the electron is promoted to empty bound atomic states and the unoccupied density of states (DOS) is probed.
Conversely, when the photon energy is higher than E0, the electron is excited to the continuum and it can be described as an outgoing
wave with wavenumber k [68,73,75,119]:

=k
m E E2 ( )0

(46)

where m is the free electron mass. The photoelectron extracted from the absorber interacts with the surrounding atomic environment
and the final state is composed not only by the outgoing wave, but also by the backscattered waves which perturb the process.

This phenomenon can be described in a quantitative way applying the Fermi’s golden rule [326–328], using as Hamiltonian the
excitation by electromagnetic waves:

µ k r e E E E( ) | |^ | | ( ) ( )f
ik r

i unocc f f i
2 (47)

where µ, ^ and k are the X-ray absorption coefficient of the material, polarization versor of the X-ray beam and photoelectron
momentum, respectively, and where E( )unocc f represents the unoccupied DOS at energy Ef and where the Dirac δ function guarantees
the energy conservation in the process. The occupied DOS of the initial state >| i , E( )occ i is always one in XAS experiments.

4.1.1. EXAFS region

In the EXAFS region, in order to simplify Eq. (47), it is possible to expand the exponential term as a series + +ik r1 where

the first and dominant term is representing the dipole interaction, and the following terms are associated with quadrupole and higher
order multipoles. Moreover, the absorption coefficient µ k( ) is usually represented as the sum of two contributions: the atomic
absorption µ k( )0 , describing the contribution of the absorbing atom as if it was isolated (i.e. without neighbors), and the EXAFS
function k( ), accounting for the scattering effects [314]:

= + =µ k µ k k i e k
µ k µ k

µ k
( ) ( )[1 ( )] . . ( )

( ) ( )
( )0

0

0 (48)

Experimentally, the absorption coefficient is obtained by measuring, in transmission mode, the X-ray beam intensity before I0(E)
and after I1(E) the sample [21,22,73,75,314] and applying the Lambert-Beer law [329,330]:

= =I E I E e µ E x I E
I E

( ) ( ) ( ) ln ( )
( )

µ E x
1 0

( ) 0

1 (49)

where x is the sample thickness. In case the selected element for XAS experiment is too diluted or the sample thickness is too large
(and cannot be reduced), then transmission experiments become unfeasible and experimentalists are forced to measure one of the
decay channels of the photon absorption process that are either the Auger or the X-ray fluorescence phenomena [331–333]. In such
cases μ(E) is obtained as [21,22,73,75,314]:

= =µ E I E
I E

µ E
I E

I E
( ) ( )

( )
or ( )

( )
( )

Fluo Auger

0 0 (50)

being IFluo(E) and IAuger(E) the measured fluorescence and Auger yields, respectively. The dependence of the absorption coefficient
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with respect to the photoelectron wavevector k is than obtained applying Eq. (46) to Eqs. (49) or (50) for all energy values E > E0.
Fig. 24a reports the experimental μx(E) of a GaAs bulk polycrystalline sample in the region covering both Ga and As K-edges. The

two k-weighed χ(k) functions, extracted using Eq. (48), are shown in Fig. 24b top and bottom curves for the Ga and As K-edges,
respectively; Parts (c) and (d) report the corresponding phase-uncorrected FT.

The χ(k) function can be expressed as a sum of contributions due to all possible N-bodies scattering k( )N from N= 2, two bodies
interaction or single scattering (SS) paths, to N > 2 interactions or multiple scattering (MS) paths [68,75,312,334,335]:

=
=

k k( ) ( )
N

N
2 (51)

Each k( )N term is given by the sum over all N paths where the photoelectron, once leaving the excited atom (located in r0),
interacts with (N − 1) neighbors (located in ri: i = 1, 2, … N − 1) before recombining in r0 :

= + +k A k sin kR k k( ) ( , ) [ 2 ( ) ( , )]N N N
N (52)

where k( ) is the phase shift undergone by the photoelectron interacting with the other electron clouds of the excited atom and where
A k( , )N and k( , )N are the k-dependent amplitude and phase functions that takes into account all (N − 1) interactions of the N
path and where R is the path length:
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Fig. 24. (a): Absorption coefficient μx vs. the photon energy, measured in transmission mode, in the 10250–13000 eV range of a GaAs bulk
polycrystalline sample (being × the sample thickness). The first discontinuity across 10.367 keV corresponds to the Ga K-edge, while the second
one, around 11.867 keV, corresponds to the As K-edge. (b): Ga (top) and As (bottom) K-edge EXAFS oscillations, kχ(k), as a function of k, obtained
from the raw datum reported in part (a) after removal of the background absorption and normalization to the jump edge, see Eq. (48). (c): Fourier
transform of the Ga K-edge kχ(k) into r-space, where the contributions of the first (Ga-As), second (Ga-Ga) and third (Ga-As) coordination shells
around Ga can be distinctly observed around 2.2, 3.7 and 4.4 Å respectively. Note that these distances are slightly shorter with respect to the actual
ones since the Fourier transform has not considered the phase function [ +k k2 ( ) ( , )N ], see equation (52). (d): as part (c) for the As K-edge kχ(k)
function. Reproduced with permission form Ref. [119] (copyright Elsevier, 2004).
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While the series (51) and (52) are formally infinite, in all real cases, due to the finite lifetime of the excitation (related to the core-
hole life time [336]) and to the exponential dumping of the path Γ contribution as a function of the path length R , only the first few
terms contribute significantly to the measured χ(k) function. In amorphous on nano-crystalline materials the number of relevant
paths is smaller than in ordered crystalline materials.

When recombining in r0, after having travelled the whole N path, the photoelectron wavefunction is out of phase with respect to
the wavefunction of the emitted photoelectron since it travelled a path length of R and as a consequence of the (N− 1) interactions
with neighbors and of the double interactions with the external electron clouds of the excited atom itself, see the argument of the
sinus function ion Eq. (52). The kR term can be modulated changing the photoelectron wavenumber k, i.e. changing the photon
energy according to Eq. (46). The outgoing and the incoming wavefunctions interfere and the interference can assume any config-
uration between full constructive [Δφ = 2nπ] and full destructive [Δφ = 2(n+ 1)π] depending on the difference of phase between
the two waves. The energy scan performed in the data collection, reported in Fig. 24a, measured along several periods this inter-
ference phenomenon, which causes oscillations in the absorption coefficient μ(E)x after both edges, better visible in the kχ(k)
functions reported in Fig. 24b.

A decomposition of the cross-section in the EXAFS region, alternative to the MS approach described above, has been reported by
Filipponi, Di Cicco and Natoli into irreducible N-body signals [238,239,337,338].

The historical expression highlighted by Stern, Sayers and Lytle in the early 1970s for the k( ) function [237,339,340], represents
the single scattering approximation of Eqs. (51) and (52):
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Where S0
2 is the passive electron amplitude reduction factor [341,342], estimated as squared projection of the many-body wave

functions of the (Z− 1) “passive” electrons before and after excitation of the photoelectron: = < >S Z
i

Z
f

0
2

1 1
2 [75], being Z the

number of electrons of the excited atom, before excitation. Usually S0
2 is close to unit and can be either computed from theory or

determined experimentally using model compounds. The sum in Eq. (54) is performed over “coordination shells”, which are defined
as groups of atoms of the same element at similar distances from the absorber; Nj is the number of atoms in the shell, Rj is the average
j-th shell bond distance (for single scattering paths =R r2 j), j

2 is the Debye-Waller factor depending on the mean square variation of
distances about the average and on the thermal motion of the single atoms, f k r| ( , )|j j and k( )j are the modulus and the phase of the
complex electron scattering amplitude of the scattering atom j, k( )0 is a phase depending on the absorbing atom, k( )e is the
photoelectron mean free path (typically few Å, depending on k and on the surrounding atoms [343]). Therefore, the analysis of the
EXAFS signal allows determining the interatomic distances rj, the coordination numbers Nj and to estimate the thermal and static
disorder, estimated having a Gaussian distribution around the equilibrium distance Rj of standard deviation σj, typical of harmonic
interatomic potential [344]. This term will be further discussed in the following.

Summarizing, the total EXAFS function χ(k) will be the sum of all the SS and MS paths, as indicated by Eq. (51). In principle, there
is an infinite number of such paths, but, in practice, their number is limited by the fast damping of the signal for long RΓ (usually
paths with RΓ > 10 Å have negligible amplitude) and by the fact that the amplitude of MS signal quickly decreases with the order N
(usually paths with N> 4 can be neglected). Usually SS path have a much stronger intensity of the MS ones, because of both shorter
path lengths R and of larger A k( , )N scattering amplitudes. However, exceptions occur in case of an alignment of three (or more)
atoms in an almost collinear geometry resulting in MS path with scattering angles close to 0 or to 180°, which amplitude in enhanced
by focusing effects [345]. This is the case e.g. of linear triatomic molecules (such as HgBr2, HgCl2, AuBr2

−, and CuBr2
− [346]); of

several metal carbonyl complexes [347–351]; of some other organometallic complexes [352–354]; of crystalline solids with specific
space groups (e.g. Pm-3m for ReO3 [355] Fm-3m for NiO [356,357] or MgO [358]); of metals [359,360] and metal NPs that crystallize
in the fcc or bcc phases [131,361–366] etc …

As an example of a case where MS contributions are relevant, Fig. 25a reports for a bulk polycrystalline NiO measured at RT the
k3χ(k) -weighted, phase uncorrected, modulus of the FT together with the corresponding best fit scattered gray circles and solid black
line, respectively [356]. The contributions of the independent scattering paths, as obtained from the fit, are also shown: SS paths are
reported in red for oxygen scatterers and in blue for nickel scatterers, while the most relevant MS paths are reported in green. For the
assignment of the different paths refer to the figure caption and to part (b) of Fig. 25, where the absorbing atom is labelled as (0) and
the scattering neighbors are numbered as a function of the progressive shells.

According to Eq. (54), each path included in the fit requires the optimization of three parameters: (Nj, rj and j
2), together with the

two parameters S0
2 and E0 that are common for all paths, the latter defining the relationship between the photon energy E and the

photoelectron wavenumber k, see Eq. (46). The analysis of an EXAFS spectrum which exhibits a good signal up to high R values, such
as that reported in Fig. 25a, has to face the problem that the number of scattering paths N increases rapidly with the distance R from
the absorber and so do the number of parameters to be optimized, see black circles in Fig. 25c. The Nyquist-Shannon theorem (or
sampling theorem) [367–369], defines the maximum number (nind) of optimized parameter as the product of the sampled interval in
k-space (Δk) and the interval in R-space (ΔR) where the fit is performed [73,312]:

=n k R2 .ind (55)
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The open diamonds in Fig. 25c represents the number of optimizable paths according to the Nyquist-Shannon theorem for a Δk
interval as large as 20 Å−1. The black dots and the open diamond curves cross before R = 4 Å, making apparently impossible the
analysis of higher shells. This apparent contradiction is overcome by considering the high symmetry of the NiO crystals, that makes
several ΓN paths equivalent, so that the same Nj, rj and j

2 parameters can be used for them. This is e.g. the case for the 6-equivalent
first shell Γ2 paths connecting Ni0 to O1a, O1b, O1c, O−1a, O−1b and O−1c (the last three not explicitly represented in Fig. 25b). In such
a case the situation improves (see red squares in Fig. 25c), but the constrain of the Nyquist-Shannon theorem appears again for
R > 5.5 Å.[312] In case of ordered materials for which a hypothesized structural model (obtained either from XRPD Rietveld
refinement or form DFT optimization) needs to be verified by EXAFS, then the number of optimizable parameters can be significantly
reduced as all coordination numbers Nj are fixed by the model and as a single isotropic enlargement factor α can be used to define all
path distances RΓ:

= +R R(1 ) 0 (56)

where R 0 is the path distance defined in the tested structural model. This approach, has been successfully applied to understand the
local structure of metal-organic frameworks (MOFs) [370–378], of organometallic complexes [379–383] and of metal atoms in
zeolites [178], and has been named XRD- assisted (or DFT-assisted EXAFS) analysis. Using this method, when different structural
models are considered, the selection of the most reliable structural model is based on (a) the agreement between experimental and
theoretical EXAFS curves (R-factor); (b) the agreement between DFT- and EXAFS-optimized interatomic distances (α value in the
−0.01 < α < 0.01 range); (c) error bars associated with the optimized parameters, and (d) physical meaningfulness of the non-
structural parameters (ΔE and σ2) [178,383,384].

The problem becomes much more complex for nanomaterials because the relaxation of the structure at the surface leads to the
appearance of non-equivalent atoms as photon absorbers and removes the degeneration of the scattering path implying a reduction of
the coordination numbers and a variation of the paths length [312,356,358]. In this regard, a decrease in Nj and a shortening of the

Fig. 25. (a) k3-weighted, phase uncorrected, FT of the experimental Ni K-edge χ(k) of polycrystalline NiO collected at room temperature (gray
scattered points) superimposed with the best fit up to the 7th coordination shell (solid line) together with the SS Ni-O (red lines), the SS Ni-Ni (blue
lines) and the most relevant MS paths. In particular, vertically shifted, from top to bottom: 1st shell SS Ni0-O1a-Ni0; 2nd shell SS Ni0-Ni2a-Ni0; 3rd
shell SS Ni0-O3a-Ni0; 4th shell SS Ni0-Ni4a-Ni0; Ni0-O1a-Ni4a-Ni0 3-body MS path; Ni0-O1a-Ni4a-O1a-Ni0 4-body MS path; 5th shell SS Ni0-O5a-Ni0; Ni0-
O1a-O5a-Ni0 3-body MS path; 6th shell SS Ni0-Ni6a-Ni0; 7th shell SS Ni0-Ni7a-Ni0; Ni0-Ni2a-Ni–2a-Ni0 3-body MS path; Ni0-Ni2a-Ni7a-Ni0 3-body MS
path; Ni0-Ni2a-Ni0-Ni–2a-Ni0 4-body MS path; Ni0-Ni2a-Ni7a-Ni2a-Ni0 4-body MS path. The atoms labeling is reported in (b); negative atom labeling
refers to atoms located in symmetric opposite positions with respect to Ni0; according to Eq. (53) all paths start and end in Ni0. (b) Cubic NiO cluster
with Ni and O atoms represented as small blue and big red numbered spheres, respectively. Number 0 identifies the absorbing Ni atom, while the
progressive 1–7 numbers refer to the 1st − 7th coordination shell around Ni(0). All atoms belonging to the same shell are degenerate in the cubic
symmetry of the bulk case, resulting in equivalent scattering paths. The letters following the numbers are used to distinguish atoms of the same shell
once the degeneration is removed by tetragonal distortion (vide infra). (c) Total number of scattering paths (black dots), number of independent
scattering paths (red squares) and maximum number of optimizable shells for a Δk interval of 20 Å−1 (blue open diamonds) present considerin a
sphere of radius R centered in the absorbing atom Ni0. A logarithmic scale has been adopted for ordinate axis. Previously unpublished figure
obtained adapting graphical material from Ref. [356] (a,b), and from Ref: [312] (c). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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average RΓ, accompanied by an increase in static disorder, has been observed in Rh NPs supported on carbons upon decreasing the
average particle size distribution [385].

In order to perform a more advanced analysis of the EXAFS signal, it is necessary to go into a deeper detail on the term
kexp( 2 )j

2 2 in Eq. (54). The origin of this term is related to the different time scales of the photoabsorption and consequent scattering
processes (~10−16–10−15 s) and of the atomic vibrations in molecules and condensed phases (10−13 s). Consequently, each single
photon absorption in the XAFS phenomenon captures a snapshot of instantaneous atomic positions. The actual experiment implies the
sum of a huge number of elementary processes, implying that XAFS actually probes the configurational average of the atomic
positions [75,312]. In this context, it is relevant to underline that the EXAFS j

2 factor depends on the degree of correlation of the
vibration of the absorbing atom in r0 and of the scattering atom in rj, while the analogous Debye-Waller factor which affects the
intensity of the Bragg peaks in X-ray diffraction experiments depends only on the mean square deviation of each atom’s position with
respect to its equilibrium value, projected in the direction of the scattering vector [75]. As already suggested in the seminal work of
Sayers, Stern Lytle [237], the effect of a small static structural disorder can be taken into account by a supplementary Debye-Waller
factor ( j stat,

2 ) which is added in quadrature to the thermal one ( j ther,
2 ) [73,75]:

= +j j ther j stat
2

,
2

,
2

(57)

Moreover, the term kexp( 2 )j
2 2 accounts for the radial disorder only, whereas both the scattering amplitude f k r( , )j j and phase

shift k( )j functions exhibit a nonlinear angular dependence that is particularly relevant for an almost collinear configuration of
atoms [312,345,386]. In case of systems with a relative small disorder, a low-order Taylor expansion of f k r( , )j j and k( )j functions
represents a good approximation [238,239].

To treat in a more accurate the thermal and the static disorder, some advanced approaches, based on calculation of the con-
figuration averaged EXAFS signal using a set of atomic configurations, have been developed. They are based on: (i) classical mo-
lecular dynamics [387–408]; (ii) ab initio molecular dynamics [397,409–418]; (iii) Monte Carlo (MC) simulations [419–429]; (iv) or
reverse Monte Carlo (RMC) simulations [403,430–447]; and (v) evolutionary algorithm [403,448–457]. Method (v) represents a
computationally more efficient extension of method (iv), that to analyze SS and MS contributions to the EXAFS data up to high R
values considering the disorder of both thermal and static origin. It is worth mentioning that molecular dynamics (both classical and
ab initio) and Monte-Carlo methods need a reliable force-field model to describe the interactions between atoms [458], while reverse
Monte Carlo approaches does not [312,437,459].

In this context we will briefly describe the general scheme (Fig. 26a) used to analyze the EXAFS data using a configuration
averaging coming from molecular dynamics [312] The first step is the definition of both the force-field model that describe all
relevant interactions among atoms and the starting the structural model representative of the sample (Fig. 26a, top part). The former
must be a priori tested to verify its ability to reproduce the material properties [458]. For NiO NPs, the latter point consists in defining
the NixOy chemical composition, the size and the shape of the NPs as well as the density of atomic vacancies [312,460]. Then
molecular dynamic simulations are performed at the experimental temperature/pressure used in the EXAFS data collection (Fig. 26a,
middle part). Note that in case the temperature of the experiment is lower than the Debye temperature of the material, ab initio
molecular dynamic must be used, otherwise classical molecular dynamic calculations are reliable [312,461]. The molecular dynamic
calculations provide the partial radial distribution functions that, in turn, give the interatomic distances (rj) and the coordination
numbers (Nj), of the different coordination shells. The so determined rj and Nj values are then compared with those obtained from a

Fig. 26. (a) Scheme of the MD-EXAFS calculations. (b) Comparison of experimental (open circles) and configuration-averaged (solid lines) Ni K-
edge, k2χ(k) EXAFS curves collected at 300 K for bulk [462] and nanosized [460] NiO: bottom and top panels, respectively. (c) as (b) for the
corresponding Fourier transformed data. Adapted with permission form [312], copyright IUCr 2014.
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conventional analysis of EXAFS spectrum: at this stage, the quality of the agreement between the two sets of structural parameters is
used as a criterion for tuning the force-field model in order to avoid an unreliable evolution of the NP structure during the molecular
dynamic run and to minimize the number of EXAFS calculations in the successive step. The configuration-averaged EXAFS spectrum
χMD(k) is obtained by averaging the EXAFS spectra of the simulated NP over all accepted Monte Carlo snapshots ( MD snapshots_
average), that, in turn, are obtained by averaging the EXAFS spectra computed, for a given NP configuration, over all the Ni atoms of
the NP ( Ni atoms_ average):

=k k( ) ( ) Ni atoms MD snapshotsMD _ _ (58)

The agreement between the calculated EXAFS spectrum k( )MD and the experimental one k( )exp is adopted as a criterion to select
the best structural model of the NiO NP [312,460] (Fig. 26a, bottom part). The advantage of this methodology is that it requires only
few independent free parameters to model the NP structure, which are optimized to find the best agreement between k( )MD and

k( )exp considering all SS and MS paths (which amplitude is larger than a fixed value) and by taking into account the NP disorder
(both thermal and static) effects within a large real-space range [312,460].

The agreement between experiment and theory obtained by Kuzmin and coworkers adopting the described methodology on NiO
NPs (particle size in the 3.6–4.2 nm range and Ni vacancies in the 0.4–1.2%) and measured at 300 K is reported in the top parts of
Fig. 26b and c in the k- and R-spaces, respectively [312,460]. For the validation of the approach, the authors reproduced successfully
also the EXAFS spectrum of NiO bulk (bottom top parts in Fig. 26b,c) [312,462].

4.1.2. XANES region
The experimental XANES spectra are collected simultaneously to the EXAFS part in transmission, fluorescence yield or electron

yield modes, see Eq. (49) and (50), depending on the sample characteristics.
Eq. (54) cannot be used to describe the XANES region since it can be correctly applied only when the energy is sufficiently higher

than the absorption edge. However, already a decade before the seminal papers which made EXAFS a powerful structural char-
acterization technique [237,339,340], Van Nordsthand [463] investigated by XANES several transition metal compounds and dis-
cussed their XANES spectra according to the local structure and valence of the metal element, highlighting also the chemical shift
with valence. This was a first demonstration that the XANES spectral region can provide interesting structural and electronic in-
formation, being very sensitive not only to the interatomic distances, but also to the symmetry of the coordinated atoms, distribution
of charges and potential around the absorbing atom [74,464].

A significant example of the versatility and usefulness of XAS spectroscopy in the study of nanomaterials is the use of C K-edge
XANES/NEXAFS spectroscopy to simultaneously characterize the electronic, orientational, and structural properties of carbon-based
materials and nanomaterials. Starting from the seminal studies on graphite [465], several groups have experimentally investigated
the XAS spectra of a 2D monolayer and few layer graphene [466–468]. They highlighted the presence of two main spectral features at
about 285 and 292 eV, assigned to π* and σ* final states, respectively. They also observed a polarization dependence of the peak

Fig. 27. (a) C K-edge NEXAFS spectra from single- to four-layers graphene flakes measured with the linear polarization vector nearly-parallel (E1,
black curves) or perpendicular (E2, red curves) to the graphene basal plane. (b) Calculated and experimental (taken from Ref. [476]) index of
absorption for C60. Part (a) adapted with permission from Ref. [468], Copyright Elsevier (2009); part (b) adapted with permission from Ref. [475],
Copyright American Physical Society 2017. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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intensity [468], which was in agreement with the previous results obtained on graphite (see Fig. 27a) [465]. As suggested by Hua
et al. [469], also two other peaks, which are observed at 283.7 and 288 eV, are very interesting since they can be used as fingerprints
to estimate the defect concentration or the sample size.

C K-edge NEXAFS spectroscopy has been also widely applied in the study of carbon nanotubes (CNTs). The energy position of the
σ* resonances in functionalized CNTs is particularly sensitive to the bond distances between the C absorber and the surface functional
groups, while monitoring the π* band it is possible to study the bond hybridization, thus measuring the percentage of sp2 and sp3 in
mixed sp2/sp3- bonded systems [470]. Moreover, from a detailed analysis of the already mentioned π* and σ* resonances, it is possible
to evaluate the oxidation level of the sample and presence of oxygenated functionalities [471–473].

It is worth noting that for several years XANES spectra have been basically discussed in a qualitative way: considering the
absorption edge shift, observing the presence or absence of specific spectral fingerprints and comparing the results with data acquired
on model compounds. A significant improvement is represented by the CONTINUUM code released in the early ‘90s by Natoli and co-
workers [474], which was the first code able to compute a theoretical spectrum starting from a hypothesized local structure. Thanks
to the following impressive developments in computational power and to the appearance of more sophisticated modeling approaches,
as discussed also for EXAFS in the previous section, nowadays XANES spectroscopy is becoming a mature technique for the quan-
titative structural determination of the local environment of nanomaterials. The effectiveness of modern modeling approaches in
reproducing fine spectral features can be appreciated for carbon based nanomaterials in the study of Fossard et al. [475]. They
calculated for fullerene both the valence excitation spectrum of solid C60 below 70 eV and the C1s near-edge spectra over a com-
parable energy range. The simulations captured most of the valence oscillator strength, in good agreement with experimental data
(Fig. 27b).

The chemical selectivity of XAS is also extremely useful in the investigation of functionalized carbon materials. Xing et al. [477],
for instance, combined XPS and Pt LIII-edge XAS to study the anchoring of Pt nanoparticles on graphene. They showed that the
electron density shifts from Pt to graphene depending on the strength of the Pt-graphene interaction. Another interesting example
concerns the formation mechanism of Pt nanoparticles confined within the channel of carbon nanotubes [478]. The authors coupled
C K-edge and Pt LIII-edge XAS spectra to show that charge transfer from multi-walled carbon nanotubes (MWCNTs) to the en-
capsulated H2PtCl6 precursor caused the spontaneous reduction of Pt4+ to metallic Pt, as highlighted by the decrease in intensity of
the white line peak in the XANES region (Fig. 28a). Moreover, the analysis of the EXAFS spectral region showed that, varying the
inner diameter of MWCNTs from 15 nm to 10 nm and 5 nm, the Pt–Pt bond length of the confined Pt nanoparticles decreased
gradually (Fig. 27b).

4.2. X-ray emission spectroscopies

As described in the previous sections, the excitation of a core electron by X-rays implies the formation of a core hole with a
specific lifetime. Such excited state can undergo a radiative decay yielding X-rays emission of energy ħω. In X-ray emission spec-
troscopy (XES) the emitted fluorescence radiation is recorded with a high energy resolution. Usually, this excited state is induced by
the absorption of photons in the X-ray region of the electromagnetic spectrum, but also other particles (i.e. protons induced X-ray
emission - PIXE) can be employed [479].

The acquisition of XES requires, besides the standard monochromator employed to select the energy ħΩ of the incoming X-ray
photons (present in every XAS beamline), an additional X-ray spectrometer able to analyze the energy ħω of the fluorescence X-rays
emitted by the sample in the radiative decay process. Indeed, the energy resolution of standard solid-state fluorescence detectors,

Fig. 28. Pt LIII-edge XAS spectra (a) and corresponding modulus of the FT of the EXAFS signal (b) for the H2PtCl6 precursor encapsulated in
MWCNTs with different diameters (5, 10 and 15 nm). Adapted with permission from Ref. [478], Copyright Owner Societies (2016).
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conventionally employed to acquire XAS spectra in fluorescence mode (see Section 4.1), is 100–300 eV, which is, by far, insufficient
for XES spectra. Therefore, XES spectrometers exploit the Bragg law to reach a resolution in ħω in the order of 1 eV or better. Since
fluorescence emission is isotropic, an ideal XES spectrometer has to combine the apparently contradictory requirements of a large
angular acceptance with good energy resolution. The analyzer X-ray optics can be divided in two main categories as shown in Fig. 29.
The first kind of analyzers are based on polychromators that disperse the emitted X-rays with different energies onto a position
sensitive detector [480–482] (see Von Hamos spectrometer in Fig. 29a), while the second category employs a monochromator which
is scanned across the ħω spectral range of interest [483–485] (see spherically curved 1:1 focusing monochromator in Rowland
geometry in Fig. 29b). The advantages of a polychromator with respect to a scanning monochromator are basically three: (i) there are
no moving parts; (ii) it can achieve a better energy resolution; (iii) it can acquire all the ħω spectrum simultaneously. Conversely, its
main drawback is the smaller solid angle available for each analyzed energy resulting in a worse signal-to noise ratio owing to a more
intense background arising from unwanted scattering.

All the complex spectral features of XES spectra can be described by ab initio calculations [77,486–491], however a compre-
hensive theoretical discussion is beyond the scope of this review, therefore we will introduce a simplified description relying on a one
electron picture. To introduce the specific nomenclature of XES spectroscopy, we will discuss the case of a 3d-transition metal system
with a 1s hole created by the excitation of the 1s electron to the continuum by incoming X-rays of energy ħΩ (see Fig. 30). This core

Fig. 29. (a) Scheme of a XES spectrometer in von Hamos geometry based on a polychromator employing a cylindrical Bragg crystal. This con-
figuration has no moving parts and the XES spectrum (at fixed ħΩ) is recorded in a single shot for a large range of emitted ħω on a position sensitive
detector (PSD). (b) Scheme of a XES spectrometer in 1:1 focusing Rowland geometry based on a spherical Bragg crystal. The XES spectrum is
collected as a function of ħω, at fixed ħΩ, by changing the angle of the analyzer (see curved arrow) and the position of the avalanche photodiode
detector (APD) (see straight arrow). Unpublished figure.

Fig. 30. (a) One electron representation of different XES processes including valence-to-core-XES, resonant-valence-to-core-XES and resonant-core-
to-core-XES. Vn indicates the number (n) of electrons in the valence molecular orbitals (V) just below the EF. U indicates the unoccupied molecular
orbitals just above the Fermi energy (EF) and C the continuum excitations. The blue arrows highlight the transition of an electron, which is in the 1 s
orbital in the ground state |g>, after the absorption of the incoming X-rays of energy ħΩ to reach the intermediate state |i > . The red arrows
highlight the decay of an electron from a higher orbital to the core hole with final state |f>, resulting in the emission of a photon of energy ħω. The
energy transfer ħ(Ω − ω) is shown with a dashed black arrow. Unpublished Figure. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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hole can be filled by electrons belonging to different atomic orbitals with the consequent emission of photons with a specific energy
ħω. The transition of a 3p electron to a 1s hole, known as core-to-core XES (ctc-XES), gives rise to the Kβ main lines which are
sensitive to the atom oxidation and spin state [492]. Conversely, the transition of a valence electron to fill the 1s hole gives rise to the
valence-to-core XES (vtc-XES) which provides information on the type, distance and number of ligands as well as on the atom
oxidation and spin state [21,22,493].

If the core electron is excited by the incoming ħΩ photons into an unoccupied level just above the Fermi level EF, the process is
defined as resonant (r). As in the non-resonant case, we distinguish between decays of the intermediate state where the 1s hole is
filled by a valence electron (rvtc-XES) or by a core electron (rctc-XES), see Fig. 30. For resonant processes, we define the energy
transfer ħ(Ω − ω), which represents the energy that remains in the atom [21,81]. Another way to refer to resonant-XES is resonant
inelastic X-ray scattering (RIXS). For rvtc-XES the energy transfer can be only few eV, probing the energy range typical of optical
spectroscopy (charge transfer and d-d transitions), but with the advantage of being element selective [83].

As described in Section 4.1, in a standard XAS experiment the transmitted photons, the total fluorescence yield (TFY) or the
electron yield are monitored as a function of incident X-rays energy ħΩ across a selected absorption edge. In such experimental
conditions, besides the limits of the X-ray optics, there is a lower limit in the FWHM of the observed features (ΔETFY), which arises
from the lifetime broadening of the core hole of the investigated edge [22]:

ETFY core core (59)

where τcore is the lifetime of the core hole created by the absorbed incoming photons. This limit can be overcome using the setups
shown in Fig. 29 which allow measuring the fluorescence emission at a specific ħω (corresponding to a particular fluorescence decay
channel) while changing incident photon energy ħΩ. This approach takes advantage of the longer core hole lifetime for decay
transitions involving electrons coming from higher atomic orbitals (HL). In this way, since τHL ≫ τcore, the resulting XANES spectral
features are characterized by an intrinsically smaller broadening [22]:

+E [( ) ( ) ]HERFD core HL
2 2 1 2 (60)

This technique, known as high-energy resolution fluorescence detected (HERFD) XANES provides spectra with a higher energy
resolution and sharper features [493]. Moreover, the HERFD approach allows obtaining oxidation state-specific EXAFS spectra since
different oxidation states are characterized by slightly different florescence lines ħω, which can be selected using the XES spectro-
meter [77,487].

XES, being able to probe the occupied density of states, is highly complementary to XAS, which investigates the unoccupied
density of states. An interesting example of combination of XAS and XES measurements is provided by the investigation by Eliseev
et al. of CuX@SWCNT (X = Cl, Br, I) nanostructures prepared by capillary filling of 1.4–1.6 nm single-walled carbon nanotubes
(SWCNT) with copper halides [494]. By combining HRTEM (Fig. 31a) and Cu K-edge EXAFS data the authors highlighted that the
material show a distorted two-layer hcp of halogen atoms arranged along the SWCNT and that Cu is partially coordinated to C atoms.

Fig. 31. (a) HRTEM image of a CuBr nanocrystal within a 1.4 nm SWCNT. (b) HERFD XANES of CuX@SWCNT and reference compounds. The
fluorescence emission was recorded at the maximum of the Cu Kα1 line. (c) XES spectrum of the Cu Kβ5 X-ray emission line of the CuX@SWCNT and
the reference compounds acquired at an incident photon energy ħΩ = 9.1 keV. Adapted with permission from Ref. [494], Copyright Elsevier (2012).
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They also acquired HERFD XANES spectra (Fig. 31b) at the Cu K-edge by selecting the Cu Kα1 line emission with the XES spec-
trometer. These spectra show a pre-edge peak A* due to a quadrupole 1s–3d transition, ascribed to a Cu state with a partially vacant
3d orbital, and a main edge 1s–4p transition which is split into two components, B1 and B2. The pre-edge peak A*, whose intensity
varies for different CuX@SWCNT, suggests that the bonding of one-dimensional intercalated crystals to the nanotube wall occurs via
a hybridization of C 2pz π orbitals and Cu 3d orbitals, which leads to new localized states formation. The combination of the HERFD
XANES spectra with Cu Kβ5 XES spectra (Fig. 31c) allowed the authors to conclude that the energy positions of these states are similar
in all CuX@SWCNTs, irrespective of the halogen atom, but the density of states raises by increasing the electron affinity of the
halogen atom.

4.3. Combining scattering and spectroscopy

The combination of spectroscopic and scattering techniques is a powerful tool to disclose both the short-range and long-range
order in materials, able also to investigate, for instance, the evolution of the structural and electronic properties of the systems under
operating conditions [495]. The simplest way to combine these techniques is to employ a sequential data acquisition procedure. An
experimental setup optimized for this kind of experiments is available, for instance, at the Swiss-Norwegian beamline of the European
Synchrotron Radiation Facility which is equipped with two independent monochromators, allowing a rapid (about 30 s) switch
between X-ray absorption and X-ray diffraction acquisition [366,496–499]. Thus, both XAS spectra and XRD patterns (with a 2D
detector) can be collected on exactly the same sample in almost the same conditions.

An emblematic example of this approach is provided by the combined XANES/XRD study of the correlation between Cu(II) self-
reduction [178,500] and cation migration [501] in copper-exchanged zeolites with chabazite (CHA) topology. In particular, An-
dersen et al. [501] found that, after activation in oxygen, there is a migration of Cu species from the eight-membered rings (8r) into
the six-membered rings (6r) site (black and red curves, respectively in Fig. 32a). This phenomenon is accompanied by a partial
reduction of Cu(II) into Cu(I) (violet and orange curves in Fig. 32b). As highlighted by the independent XRD and XAS results, acquired
almost simultaneously, this reduction phenomenon occurs when almost all water molecules have left the zeolite framework (see blue
curves in Fig. 32a and b). The reduction of a fraction of Cu(II) into Cu(I), determined by linear combination analysis of the XANES
data, is crucial to explain how, at the end of the thermal activation, copper species can occupy the 6r site with an occupancy almost
twice than the maximum allowed for Cu(II) species considering the Si/Al ratio of the investigated zeolite (15.5, see gray dashed line
in Fig. 32a). The same experiment activation process performed in He resulted in a more pronounced migration of copper species
from the 8r to the 6r site and in a complete reduction of Cu(II) into Cu(I), which is independent from the occupied site (see Fig. 32c
and d).

Another interesting example of the combination of scattering and spectroscopic techniques is provided by the study by Rønning
et al. [502] of catalysts for Fischer Tropsch synthesis (FTS). They combined XRD and XAS to determine the crystallite size and the
oxidation states of the active phase in a cobalt-based catalyst for FTS while monitoring methane formation by mass spectrometry. In
particular, they showed that, during thermal reduction, the Co3O4 spinel structure of the freshly produced catalyst transforms to
metastable CoO and then to metallic Co with reduced crystallite size. However, XANES data revealed that about 10% of the cobalt

Fig. 32. (a) Evolution of the Cu occupancies in the 8r (black curve) and 6r (red curve) sites during activation in a 1:10 mixture of O2 and He of Cu-
CHA (Si/Al = 15.1; Cu/Al = 0.48) obtained from the Rietveld refinement of time-resolved XRD data. The blue curve shows the number of water
molecules per unit cell optimized in the refinements (blue data). (b) Fraction of hydrated Cu(II) species (blue curve) of Cu(II) species interacting
with the CHA framework (violet curve) and of Cu(I) species interacting with the CHA framework (orange data) calculated using a linear combi-
nation analysis of the XANES spectra acquired sequentially immediately after the XRD patterns. (c) As part (a) for activation in pure He. (d) As part
(b) for activation in pure He. Unpublished Figure reproducing data published in ref. [501]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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remains in non-metallic phase after reduction.
More advanced approaches to combine scattering and spectroscopy include diffraction anomalous fine structure (DAFS)

[119,503,504] and X-ray standing waves (XSW) [505–507].
DAFS measures the elastic Bragg reflection intensities versus photon energy. During a DAFS experiment, the X-ray energy is varied

across an absorption edge to monitor the energy dependent modulation in Bragg peak intensities. The observed fine structure is
similar to a conventional XAS spectrum and can be employed to obtain the same kind of information about the local environment of
the absorber (i.e. bond lengths, coordination numbers, neighbor types, oxidation state), as described in Section 4.1. However, the
technique combines this short-range order sensitivity, typical of XAS, with the long-range order and crystallographic sensitivity of
XRD. Indeed, the obtained XAS-like spectra are site-specific and provide information on inequivalent sites of a single atomic species
within the unit cell, depending on the selected Bragg reflection. One of the reasons of the limited application of this method is related
to its tight experimental requirements. Indeed, a very high signal-to-noise ratio as a function of the energy is needed, as for XAS, to
perform a quantitative analysis of fine structure oscillations, but this is difficult to achieve since the diffraction yield is only a very
small fraction of the total one (usually few %) [503].

Also the XSW technique combines a diffraction based approach with spectroscopic measurements, providing element specific
information on surface structures and molecules adsorbed on single crystal surfaces [508]. In a XSW experiment a standing wave with
the periodicity of the substrate lattice is created by reflection from a single crystal. The resulting “two-beam” interference field (i.e.
the interference of incident and Bragg-diffracted X-ray plane waves) induces a spatial dependence to the X-ray spectroscopic yields
from atoms within the field. By monitoring the X-ray absorption of specific atomic species as a function of scattering condition within
the total reflectivity range, it is possible to locate selected atoms, relative to the bulk scattering planes, not only within a crystal, but
also at the surface of a crystal. XSW requires very high quality single crystals and therefore its application to nanomaterials is limited,
however interesting investigations of surface processes involving nanostructures have been reported [509].

5. Scattering and spectroscopies from surfaces

5.1. Scattering from surfaces

Whenever nanomaterials are embedded in coatings or are active layers of planar devices, specific X-ray scattering techniques to
study surfaces are needed.

X-rays follow the typical laws of the geometrical Optics [510]. Consider an X-ray beam (linearly polarized plane wave) travelling
in vacuum or in air (n0 ≈ 1) and impinging on a material flat surface (described by a refractive index n≠ 1) with an incidence angle
αi. Incoming and reflected beams fulfill the Snell-Descartes laws:

=i f (61)

=cos n cos( ) ( )i f (62)

where αi, αf are the angles formed by the incident and reflected beams with the surface. It is worth defining the critical incident angle
(αc) which depends upon the electron density of the material layers close to the surface:

= = r n2c
e e

(63)

For αi < αc total reflection of the X-ray beam occurs [37,43,73,230]. The critical angle is typically a quite low value, i.e. few
tenths of degrees.

5.2. Specular reflectivity

Let us consider a flat interface between vacuum (at >z 0) and a material with the refraction index n. The ratio of the amplitudes
of the reflected and incident E-fields is the well-known Fresnel reflection coefficient. For the S and P polarizations of the primary field
the coefficients read
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since, in the x-ray region n 1 the reflection coefficients for both polarizations differ only very little and usually we can use the
reflection coefficient rS for both S and P polarizations. The reflectivity =R r| |2 of a surface is therefore different from zero mainly at
very small incident angles; for increasing i the reflectivity decreases as n(1 ) i

2 4.
This technique, called X-ray Specular Reflectivity, is used to inspect the electronic density at and just below the material surface.

It allows surface investigations of thin films and coatings (layer deposition, molecular adsorption/desorption, surface oxidation, etc.).
Depending on the incident angle part of the incoming wave is reflected and part is refracted (transmitted). Precisely, when

αi < αc, the component of the transmitted wave-vector normal to the surface becomes imaginary. The refracted wave is exponentially
damped as a function of the distance below the surface, resulting in an evanescent wave travelling parallel to the surface. The
penetration depth ( , )i of the X-rays can be calculated as a function of the photon wavelength (Λ) and of the incident angle as
[43]:
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where “Im[]” stands for imaginary part. Therefore, by varying the incident angle across the critical edge it is possible to finely tune
the penetration depth of the transmitted beam below the sample surface and to probe electron density variation of objects laying at
the surface or below it. This property was first exploited by Marra et al. [511] to investigate the structural details of the interface
region of an epitaxial Al film grown on GaAs substrate. Successively, the same group [512] investigated the Al/Ge(0 0 1) interface
finding that the lattice parameter perpendicular to the growth plane increases progressively from to accommodate the lattice mis-
match of the germanium and aluminum, see Fig. 33. Authors found that the epitaxial Al layers are more disordered in proximity of
the germanium substrate and found ordered domains with an average size of 32 nm, that is compatible with the average distance
among misfit dislocations.

After those pioneering experiments surface scattering became a widely used technique. As a simple example, we plot in Fig. 34 the
dependence of the penetration depth on the incidence angle and energy for GaAs, choosing the photon energy around the GaK and

Fig. 33. Total-reflection X-ray diffraction patterns of the Al/Ge(0 0 1) interface as a function of the thickness of the Al epilayer, showing the Al
(2 2 0) and Ge(4 0 0) reflections (αi = 0.1°; both CuKα1 and CuKα2 lines are present in the X-ray beam). Scattered dots and full lines report the
experimental data and the calculated patterns, respectively. The inset reports a scheme of the experimental scattering geometry. Reproduced with
permission from Ref. [512], copyright Elsevier 1980.

Fig. 34. The dependence of the penetration depth of x-rays on the energy and the incidence angle calculated for GaAs in the vicinity of the GaK and
AsK absorption edges; see also Fig. 8 showing the energy dependence of the refraction index of GaAs.
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AsK absorption edges. Outside an edge, the penetration depth exhibits a steep increase at c; below the critical angle the penetration
depth is only a few nm. Increasing the photon energy, the penetration depth generally increases, at an absorption edge it decreases by
almost one decade. The dependence of the penetration depth on the energy follows the energy dependence of the imaginary part β of
the refraction index (see Fig. 8).

X-ray Specular Reflectivity is one of the most widely used X-ray techniques to inspect electron density profile, thickness and
surface/interface roughness of thin films and coatings, layers of planar devices.

This technique is also a valid choice if thin films and coatings are completely amorphous. No constraints are needed on the atomic
nature of the investigated samples. When films are also nanostructured it can be combined with grazing incidence small angle X-ray
scattering (GISAXS) suitable to study the morphology of objects and structures with nanometric size, laying at the surface and
underneath it [37,43,513].

A typical X-ray Specular Reflectivity or GISAXS experiment is realized with an X-ray beam impinging onto the sample surface at
quite small incident angle, near the critical one. The scattered wave field is registered with a 2D detector which allows collecting at
the same time the components of the scattering parallel and perpendicular to the surface.

Fig. 35 describes three cases: a 10 nm C thin film coating an unstructured GaAs substrate (Fig. 35A), a multilayer made 6 repeated
periods of Pt(3 nm)/Py(6 nm) onto a silicon substrate (Fig. 35B) and a surface with few nanostructures on top of it (Fig. 35C). In
Fig. 35A and B X-ray Specular Reflectivity probes the electron density along the surface normal (qz axis), which shows here only
thickness fringes (Fig. 35A), due to the thin C film, or the typical structure factor of the Pt(3 nm)/Py(6 nm) unidimensional lattice
(Fig. 35B). In Fig. 35C a different situation is described where the surface itself is not in the focus of the study but it is important to
investigate the nanostructures on top of it. Therefore, a linear beam stopper is here inserted to obscure any direct contribution of the
surface reflectivity itself (qy = 0 line in the scattering qy-qz plane) which is by far too intense with respect to the lower scattering from
the nanostructures. In this way, GISAXS data can be collected (here simply represented as two red lobes symmetrically positioned
with respect to the Qz axis) and from them morphological or structural nanoscale information of the nanostructures can be extracted
(here the nanostructures are randomly organized disks, therefore the information is just morphological) [37,43,513].

A typical task of a X-ray reflection measurement is to characterize surface and interface roughness. A full description of this
problem lies beyond the scope of this review; here we present only basics of the theoretical description and some characteristic
results. Details can be found in specialized monographs [514,515].

The shape of a random interface is fully described by a random displacement function u x y( , ). We define the root-mean square
(rms) roughness as = u2 , assuming =u 0 and statistical homogeneity of the interface, i.e. does not depend on =x x y( , ). The
averaging in these definitions is performed over a statistical ensemble of all shapes of the interface. Usually we assume the validity
of the ergodic hypothesis, i.e. the ensemble averaging can be replaced by averaging over a large interface area. We define the
correlation function =x x x xu u( ) ( ) ( )' ' , the shape of which depends on the physical model of the interface.

In many cases the model of a random fractal is used, even if an interface is never exactly fractal-like. In this model, one assumes
the scaling property

x x x xu u( ( ) ( )) | | H' 2 ' 2 (66)

where H (0, 1] is the fractal exponent, connected by the fractal (Hausdorff) dimension D as =D H3 . Within the fractal model,
the roughness correlation function is assumed in the form

=x x x xC
L

( ) exp
H

' 2
' 2

(67)

where L is the lateral correlation length. For distances much smaller than L the fractal scaling behavior is valid, for x x L' , the
displacements in points x and x’ are statistically independent.

In the case of a multilayer the description of an interface roughness is more complicated. We define the correlation matrix
= =x x x xC u u j k N( ) ( ) ( ) , , 1,jk j k

' ' , where the indexes run over the interfaces. The form of the correlation matrix depends on
the physical model. In the frequently used model by D. G. Stearns [516] that the random displacement function of an interface j can
be written as a superposition of two terms, one is the component of the roughness “inherited” from the interface j-1 below and the
other is the “intrinsic” roughness xh ( )j added to the system during the growth of the layer between the interfaces j-1 and j:

= +x x x xu u a h( ) ( ) ( ) ( )j j j j1 (68)

here we denoted convolution and xa ( )j is the inheritance function. From Eq. (64) explicit (albeit quite cumbersome) expression can
be found for the matrix Cjk [515].

Several approaches can be found for the description of x-ray scattering from rough systems. Usually one assumes that the
measured signal is averaged over the statistical ensemble mentioned above. Then, the averaged scattered intensity can be divided into
the “coherent” and “diffuse” components

= = +r r r r r r rI E E E E( ) ( , ) | ( )| | ( ) | | ( ) ( ) |2 2 2 (69)

For the coherent component, usually the approach by Névot and Croce is used [517]. Using this method, the coherent reflectivity
of a single rough surface is

R R= e| |k k
coh flat

2 2z z
2 (1) (2) (70)
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where R = r| |flat
2 is the reflectivity of a flat surface, kz

(1,2) are the perpendicular components of the wave vectors above and below the
interface. From this formula, it follows that if the absorption in the material is negligible, below the critical angle c the component
kz

(2) is purely imaginary and R R=coh flat. Therefore, within the approximation of Névot and Croce, the coherent reflectivity below the
critical angle is not damped by roughness. The same approximation can be used for multilayers, the details can be found in the

Fig. 35. (a) Main Part: schematic representation of the GISAXS experimental set-up. X-rays impinges with an incident angle αi on a planar sample;
the scattered beam exits at an angle αf and is collected with a 2D detector perpendicular to the sample surface. Top left corner: unstructured GaAs
substrate (black) with a 10 nm C thin film on top of it (green). Blue arrows represent the incoming and the scattered X-ray beams. The penetration
depth of the beam is also reported; (b) Top right: scheme of a multilayer made 6 repeated periods of Pt(3 nm)/Py(6 nm) onto a silicon substrate;
bottom right: diffracted signal collected on the 2D detector (qy-qz plane); left: corresponding signal obtained integrating the image over qy (courtesy
of Marcio Medeiros Soares –XRD2 beamline – LNLS, Campinas); (c) a surface with few nanostructures on top of it. The bold bare on the 2D detector
represent the linear beam stopper used to obscure line at qy = 0 in the scattering qy-qz plane. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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literature cited above.
As a simple illustration, we present in Fig. 36 reflectivity curves of a single Si rough surface and of a SiGe multilayer with rough

interfaces.
In the case of a single surface, the tail of the reflectivity curve (left panel) is much suppressed, while the plateau below the critical

angle is almost unaffected by the roughness. For a multilayer example we consider a [Si(12 nm)/Ge(5 nm)] × 10 periodic multilayer
on a Si substrate. The periodicity of the multilayer structure gives rise to satellite maxima, the position of which can be deduced from
the Bragg’s law of the one-dimensional “crystal” representing the multilayer:

=D n p2 cos ( )i2 2 (71)

where D is the multilayer period, n is the mean index of refraction of the multilayer structure and p is the order of the satellite
maxima. The rms roughnesses of individual interfaces obey the formula = +( ) ( )j j 1

2 2 , which follows from the Stearns model
in Eq. (64) (j is the interface index), the rms roughness of the substrate is sub 0. The incremental roughness δσ affects the visibility
of the satellite maxima much more than the substrate roughness.

The diffuse part of the scattered intensity is determined by the correlation properties of the interface roughness and is usually
calculated by the distorted-wave Born approximation (DWBA), as described extensively elsewhere [515].

Here we present only one numerical example in Fig. 37 showing the reciprocal space maps of diffusely scattered intensity from the
same [Si(12 nm)/Ge(5 nm)] × 10 periodic multilayer. In the simulation we used the GISAXS scattering geometry keeping the
incidence angle constant = 0.3degi . In panel (a) we assumed completely non-correlated roughness profiles, i.e. the inheritance

Fig. 36. Coherent reflectivity curves of a single Si surface (a) and SiGe periodic multilayer (b) calculated for various rms roughnesses. See the text
for the details, the curves in the right panel are shifted vertically for clarity.

Fig. 37. Reciprocal-space distribution of the intensity diffusely scattered from a SiGe periodic multilayer, calculated for 4 various roughness models
and assuming the GISAXS scattering geometry: (a) non-correlated roughness profiles with the inheritance functions placed equal to zero; (b)
Gaussian shape of the inheritance function with width of 50 nm; (c) interfaces microscopically identical; (d) the degree of vertical roughness
correlation depends on according to Eq. (72). See the text for details.
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functions aj defined in Eq. (25) were zero. In this case, the waves scattered from individual interfaces do not interfere and the
reciprocal-space image is just similar to that from a single rough surface. In panel (c) we took = =x x xa h( ) ( ), ( ) 0j j

(2) , i.e. the
interfaces were microscopically identical. Then, the waves diffusely scattered from different interfaces have constant phase differ-
ences so that they interfere giving rise to a typical pattern of horizontal sheets. Panel (b) represents the intermediate case, in which
we assumed a Gaussian shape of the inheritance function with the width of 50 nm.

The intensity sheets contain valuable information on the roughness correlation properties; the width of the sheet along qx is
inversely proportional to the lateral correlation length L, while its thickness along qz is inversely proportional to the vertical cor-
relation length L , i.e. the maximum vertical distance between the interfaces in the multilayer, where the roughness profiles are
statistically correlated.

From the theory of multilayer growth [518] it follows that the degree of correlation of the roughness profiles at different in-
terfaces in a multilayer depends on the space frequency of the roughness. In other words, the short-wave components of the
roughness of an interface are less inherited at the interfaces close to the multilayer surface, than long-wave bumps. This fact can be
taken into account assuming a special form of the Fourier transformation of the correlation matrix:

q qC z z( )~exp( | | | |)jk j k
(FT)

(72)

Here we denoted =q q q( , )x y , z zj k, are the vertical coordinates of the interfaces j and k, and the exponent depends on the growth
mechanism [519]. The results of this model are demonstrated in Fig. 37d, where we put = 1. Since the roughness components with
larger q| | are less vertically correlated, the vertical width of the sheets increases with q| |. In experimental data, this increase can be
used for investigating the mechanisms of the roughening and/or smoothing during the multilayer deposition.

5.3. Grazing incidence small angle X-Ray scattering

A GISAXS pattern may contain morphological and structural information of the objects laying on a planar surface or below it. In
the case of diluted and randomly organized objects, the GISAXS pattern shows diffraction fringes due to the form factor of the objects,
namely shape and size of the objects. If the objects are arranged into a periodic 2D or 3D assembly structural information is also
encoded in the GISAXS pattern, i.e. the positions and symmetry of the objects can be determined. In case of correlated objects, the
description of the GISAXS pattern needs also an interference function term accounting for the mutual position of the nano-objects into
a 2D or 3D lattice [520,521].

The correct description of the scattering is realized by means of the Distorted Wave Born Approximation (DWBA) [522], as the
sum of four terms accounting for: the direct scattering from the particle (as in the kinematic Born approximation), the reflection from
the substrate surface followed by scattering by the particle (and vice versa), the reflection from the substrate surface followed by
scattering by the particle and subsequent further reflection from the substrate. In the case of a perfectly diluted system (uncorrelated
particles) the Decoupling Approximation (DA) holds, while for fully correlated objects the Local Monodisperse Approximation (LMA)
is preferred. LMA is valid for a particle collection made of monodisperse domains whose size is larger than the coherence length of the
X-ray beam.

As already said for SAXS, for systems of correlated particles, the intensity pattern is given by two contributions: the form factor
and the interference factor. It is a good criterion, before fitting the entire pattern, to study the asymptotic behavior of the scattering
(high scattering vectors) to determine the shape contribution only (especially for extremely mono-dispersed objects). Indeed, the
intensity at high scattering vectors changes as the square of the form factor which depends on q-n, with n = 1 for rod-like, n = 2
lamellar, n = 4 sphere [37,43,513].

Table 2 shows the GISAXS patterns computed for the case of: a diluted system of uncorrelated nanoparticles of different shapes
(sphere, hollow sphere, cylinder and disk), where only the form factor is taken into account in the DWBA calculation; a 2D lattice of
the same particles, with L1 and L2 as interparticle spacings, where the form and lattice contributions to the scattering are taken into
account.

It is worth clarifying that the physical origin of the fringes in X-ray Specular Reflectivity and in SAXS or GISAXS scattering pattern,
in case of form factor only, is the same. This is due to the electron density contrast between the scattering particles (or thin film) and
the matrix embedding them (or substrate).

5.4. Periodically assembled nanocrystals

The following experiments on periodically 2D and 3D assembled nanocrystals were performed with the same laboratory (GI)
SAXS/(GI)WAXS set-up of the XMI-L@b [287], benefiting of a high-brilliance synchrotron-class table top micro-source. GISAXS data
were collected with a multi-wire detector. GIWAXS data were collected with an image plate detector. The distance sample-detector,
and thus the covered q-region, was set depending on the specific sample to study.

5.4.1. 2D assemblies
Fig. 38A shows the Scanning Electron Microscopy (SEM) images of Au nanoparticles (NP) drop casted onto two different sub-

strates: the silicon substrate with only the native SiO2 oxide (Si/SiO2) and the teflon-modified silicon substrate (Si/TL+), with a thin
teflon-like coating deposited via a cold plasma process. The GISAXS measurements and relative simulations prove that Au NP self-
assembly in a 2D lattice with hexagonal symmetry. Fingerprint of the 2D assembly is the presence of vertical stripes in the diffraction
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pattern. Indeed, the Fourier Transform of a planar periodic array of objects is a pattern made by a periodic array of lines. Data also
showed that the lateral extension of the lattice improves for the Si/TL+ substrate with respect to the Si/SiO2, confirming scanning
electron microscopy observations [523].

Fig. 38B shows the SEM image of a 2D lattice of octapod-shaped CdSe/CdS nanocrystals self-assembled on top of a silicon
substrate. The inset is the TEM image of a single octapod, having a tip-to-tip mean pod length 2l = 87 ± 2 nm and a mean pod width
D = 12 ± 2 nm. GISAXS data contain information on the nanocrystal shape and interference lattice. Indeed, the presence of a 2D
array of nano-objects is clearly encoded in the vertical stripes measured in the data [524].

5.4.2. 3D assemblies
In the previous examples the arrangement of the nanocrystals in 2D arrays is encoded in the vertical sheets which can be clearly

identified in the diffraction frame. Here, the organization of the nanocrystals according to a 3D lattice can be deduced by the 3D
diffraction spots measured in the reciprocal space, localized according to specific symmetry rules.

Fig. 39A shows oxide spherical nanocrystals assembled in a 0.5 T magnetic field in several well-separated, distinct 3D islands with
conic shape protruding outward the substrate surface. Collection and analysis of the GISAXS patterns allowed us to describe the
actual face centered cubic (f.c.c.) symmetry of the 111-oriented nanocrystalline lattice, along with a lattice distortion with respect to
a perfect f.c.c. crystal [525]. GISAXS analysis was the only technique able to determine the exact crystallographic symmetry of these
3D mesoscopic superlattices.

In Fig. 39B PbS quantum dots (QDs), synthesized with high control on size and size distribution, were used as building blocks for
fabricating solid crystals by solvent evaporation. The spherical PbS QDs were found to self-assembly in several domains by electron
microscopy. These domains form 111-oriented f.c.c. ordered 3D nanocrystalline lattices, as revealed by indexing of the GISAXS
pattern. Cuts taken along the arrows, marked in the 2D GIWAXS map with relevant colors, are also displayed separately: in plane
(black curve), out of plane (green curve) and at 45° (red curve). The cuts reveal that the PbS QDs are nano-sized crystals in the rock-
salt phase. Furthermore, comparing the FWHM of the (111) and (220) peaks, the (220) planes appear slightly preferentially oriented
parallel to the substrate which means that the QD superlattice is 111-oriented and its QD building blocks are 110-preferentially
oriented [526]. Combination of GIWAXS and GISAXS allowed us to describe the 3D superlattice as an ensemble (GISAXS) but also to

Table 2
List of GISAXS 2D simulated data: form factor only (2nd column) or form factor & lattice factor (3rd column) for relevant shapes (full sphere, hollow
sphere, cylinder and flat disk); the lattice contribution is needed for nano-objects organized into 2D lattices (last column of the Table). Previously
unpublished table.
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inspect the order of its QD build blocks (GIWAXS).
In the following we show an example of the application of the GISAXS method for the investigation of weakly ordered nano-

particles in multilayers. We consider Co/SiO2 multilayers deposited on SiO2 substrates by magnetron sputtering [527]. During a post-
growth annealing originally amorphous Co layers crystallize creating weakly ordered crystalline Co nanoparticles. The multilayers
have been investigated by x-ray diffraction, GISAXS, x-ray standing-wave method, high-resolution transmission electron microscopy
(HRTEM) as well as by time-of-flight elastic recoil detection analysis (ToF ERDA); here we show only the GISAXS and TEM results.
Fig. 40 presents HRTEM images of a Co/SiO2 multilayer before (a) and after (b) annealing.

In Fig. 41a we display a GISAXS reciprocal space map of an annealed sample. The correlation of the positions of the Co nano-
particles both in one layer and in different layers in the multilayer gives rise to two columns of satellite maxima at ±Q 0.6 nmy

1

(denoted by the white arrow). In addition, horizontal intensity sheets are visible (marked by horizontal white dashed lines). For the
explanation of these sheets we assume that the Co crystalline nanoparticles are embedded in Co-containing SiO2(Co) amorphous
layers, the Co atoms in these layers are dissolved and they did not coalesce in the Co particles. The SiO2(Co) layers contain crystalline
Co particles and they are divided by layers of pure amorphous SiO2. The horizontal intensity sheets are caused by vertically correlated
roughness profiles of the SiO2(Co)/SiO2 interfaces. In addition, in the measured map we can resolve very thin horizontal lines
(denoted by white dotted line). These lines can be explained by a dynamical effect caused by the periodicity of the Co/SiO2 mul-
tilayer. If the incidence and/or exit angles of x-rays fulfill the one-dimensional Bragg condition in Eq. (28), the interference of the
transmitted and specularly reflected wave-fields gives rise to a standing wave pattern, the period of which equals the multilayer
period D. This standing wave is then diffusely scattered by the interface roughness. The dynamical effect can be described within the
DWBA approximation [528] and it can be used for exact determination of the incidence angle. Fig. 41b explains the geometry of this
effect.

In Fig. 42 we compare the GISAXS map as well as the line scans exctracted from the map with simulations. From the comparison
we determined the mean size of the Co particles, their mean distances as well as the degree of correlation of the particle positions.

5.5. Surface sensitive XAS experiments

As discussed in Section 4, due to the relatively large penetration depth of hard X-rays [22,73], EXAFS and XANES spectroscopies

Fig. 38. (a) SEM images of Au self-assembled nanoparticles (NP) drop casted onto SiO2 oxide/silicon substrate (Si/SiO2) and on teflon-modified
silicon substrate (Si/TL+), along with GISAXS measurements and relative simulations, reprinted with permission from Ref. [523]; (b) SEM image of
octapod-shaped CdSe/CdS nanocrystals self-assembled on top of a silicon substrate. The inset is the TEM image of a single octapod. GISAXS data
contain information on the nanocrystal shape and interference lattice (vertical stripes), reprinted with permission from Ref. [524], copyright
International Union of Crystallography, 2012.
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are a bulk-sensitive techniques, that are intrinsically inadequate to determine the arrangement of atoms in the first 1–3 monolayers at
the surface region of condensed matter, that is the key point in the understanding of surface phenomena such as surface science,
interface physics/chemistry/electrochemistry, molecular adsorption and reactivity, catalysis, crystal growth, corrosion, erosion …
etc.

To avoid the contribution of the bulk atoms to the overall XAS spectrum, the experiment cannot be performed in transmission
mode and should be conceived to collect only the signal coming from the surface. This request can be achieved either by working in
electron yield mode or by working with an incidence angle αi close to the critical one (αc), see Eq. (63). In the former case, a large
fraction of atoms, both at the surface and in the bulk, are involved in the X-ray absorption process, but the Auger electrons emitted by
subsurface atoms will not reach the surface and thus will not be detected. The technique requires ultra-high vacuum conditions and is
named surface EXAFS (SEXAFS) and will be described in Section 5.5.1. SEXAFS is particularly suited to understand the structure of
molecules and atoms adsorbed on surfaces [322]. In the latter case the X-ray beam will penetrate only few monolayers from the

Fig. 39. (a) Iron oxide spherical nanocrystals assembled in magnetic field into 3D islands with conic shape and corresponding GISAXS patterns and
simulations, reprinted with permission from Ref. [526]; (b) SEM image of the QD superlattice, GISAXS data of the spherical PbS QDs self-assembled
in 111-oriented f.c.c. ordered 3D; GIWAXS 2D pattern and cuts taken along the arrow: in plane (black curve), out of plane (green curve) and at 45°
(red curve) and printed separately to compare the profiles, reprinted with permission from Ref. [526], Copyright Royal Society of Chemistry, 2014
213 (http://pubs.rsc.org/en/Content/ArticleLanding/2014/CE/c4ce01291g). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 40. Cross section transmission electron micrographs of a Co/SiO2 multilayer (a) before and (b) after annealing. In (a) the Co-containing layers
(dark) are inhomogeneous across their thickness and (b) reveals the presence of large empty voids in the annealed sample. Reproduced with
permission from Ref. [527] copyright International Union of Crystallography, 2013.
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surface (see Sections 5.1 and 5.2) guaranteeing that only surface atoms will be involved in the X-ray absorption process and thus in
the measured XAS signal. This technique is referred as reflection EXAFS or Refl-EXAFS, requires quite long (some cm) samples and
will be described in Section 5.5.2. Refl-EXAFS well adapts to the investigation of thin films, epitaxial layers, buried interfaces [119].
Obviously, the two set-ups may be used simultaneously, combining Auger-detection and reflection geometry [322,529]. In the
literature some ReflEXAFS studies are also referred to SEXAFS.

A third way to get surface sensitivity is to take benefit of the elemental selectivity of the XAS technique. This approach is
applicable in case the selected element is not present in the bulk. In case of thin films or of few ML adsorbed on a single crystal
surface, a glancing angle geometry is still preferable to increase the surface illuminated by the X-ray beam (and so the signal) and to
reduce the X-ray fluorescence emitted by the bulk atoms that increases the background and the deadtime of the solid-state fluor-
escence detectors. Glancing angle geometry will also allow to take benefit of the polarization of the X-ray emitted by synchrotrons
and discriminate between in plane and out of plane bond-lengths [119]. In case of chemical species adsorbed or grafted on

Fig. 41. Measured GISAXS map of an annealed Co/SiO2 multilayer, with specular, roughness and dynamical sheets denoted by full, dashed and
dotted lines, respectively. The arrow highlights the correlation. (b) Sketch of the GISAXS scattering geometry with specular maxima, roughness
sheets and dynamical scattering maxima indicated. Reproduced with permission from Ref. [527], copyright International Union of Crystallography,
2013.

Fig. 42. Measured (a) and simulated (b) GISAXS map of the annealed Co/SiO2 multilayer. In panels (c) and (d) the measured (points) and fitted
(lines) vertical (c) and horizontal (d) scans are compared. The numbers 1–4 denote the trajectories in reciprocal space along which the measured
data have been extracted; the trajectories are indicated in panels (a) and (b) by white lines. The color bars in panels (a) and (b) indicate the values of
the logarithm (log10) of the intensity. Reproduced with permission from Ref. [527]. copyright International Union of Crystallography, 2013.
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polycrystalline materials, typically oxide or metal nanoparticles supported on high surface area oxides or carbons [72,131,530–535],
then the sample can be prepared in form of a self-supported pellet containing a large number of polycrystals and the experiment can
be performed in transmission mode as the surface sensitivity is assured by the fact that the selected element is present at the surface of
the polycrystals only. Finally, standard transmission experiments can also be performed on microporous materials like zeolites
[536–544] or metal-organic frameworks (MOFs) [545–547], where, due to the presence of internal surfaces, almost all atoms can be
considered as surface atoms [548–551].

With respect to the surface-sensitive X-ray diffraction techniques here discussed above in Sections 5.1–5.4, surface sensitive XAS
techniques has been particularly informative in cases where surface species do not exhibit long range order, as detailed in the next
subsections. In this regard, low energy electron diffraction (LEED) technique, originally developed by Davisson and Germer [552], is
intermediate between surface X-ray diffraction methods and surface XAS, being the LEED coherence length around about 10 nm
[553] and has been widely used as surface structural determination tool [554,555].

5.5.1. Auger-detected surface EXAFS (SEXAFS)
Just five years after the publication of the milestone paper of Sayers, Stern and Lytle [237], a way to overcome the bulk sensitivity

of XAS techniques was suggested independently by Lee [556] and by Landman and Adams [553] who proposed a variation of the
EXAFS method consisting in the detection of the element specific Auger electrons along a scan of the incident photon flux across the
K-, or L-, edge of the same element. The measured electron yield is proportional to the primary X-ray absorption process
[21,75,160,314], so the signal is consistent with a standard EXAFS (or XANES) spectrum, see Eq. (50), but the surface sensitivity of
the total process is guaranteed by the short escape length (typically below 2 nm [343,557,558]) of selected Auger electrons. Two
years after this suggestion [553,556], Citrin, Eisenberger and Hewitt [559] investigated with SEXAFS the structure of I atoms on the
surface of Ag(1 1 1) crystal at different iodine coverage θ (1/3 and 1–2 monolayers). They collected the intensity of the I
(L3,M4,5,M4,5) Auger line as a function of the photon energy scanned around the I(L3) edge (Fig. 43). They found that the I-Ag distance
of the surface I/Ag(1 1 1) system is stretched by + 0.07 ± 0.03 Å with respect to that in the bulk AgI model compound (2.87 vs.
2.80 Å) [559].

One year later, Bianconi and Bachrach reported the first SEXAFS study of the Al(1 1 1) surface showing that the interplanar
distance of the first two layers is contracted by −0.19 ± 0.06 Å with respect to the bulk interplanar distance [560]: Citrin et al.
extended the study of iodine adsorbed on metal surfaces investigating the I/Cu(1 1 0) [561] and I/Cu(1 1 1) and I/Cu(1 0 0) [562]
interfaces. Since then, several experiments were successfully performed and SEXAFS became a complementary technique for the
structural determination of surfaces and of adsorbates on surfaces [314,322,563–579].

5.5.2. Reflection EXAFS (ReflEXAFS)
An alternative way to induce surface sensitivity to the XAS technique is to limit the penetration depth of the incoming X-ray beam

by working in glancing angle geometry. As discussed in Sections 5.1 and 5.2, once the energy of the photon has been fixed, the
penetration depth of the X-ray beam Λ(λ,αi) depends on the incidence angle αi see Eq. (65). Changing αi in proximity of the critical
angle, is a tool to tune the penetration of the X-ray beam and consequently the sensitivity of the corresponding XAS study. In this
acquisition configuration, the data collection can eventually also be also performed in fluorescence mode because the origin of the
decay process is no longer responsible of the depth-sensitivity of the process.

The phenomenon was first reported by Parrat in the ‘50s [247], who observed that the analysis of the intensity of the reflected X-
ray as a function of incidence angle αi, across the critical angle αc, provides insights on the structural properties of the material in the
one to several tens of nm from the surface. He used the dispersion theory (see Eq. (9)) to interpret the observed reflectivity curves of
Cu evaporated on a glass founding that the material was oxidized down to about 15 nm from the surface. After the understanding of
the EXAFS phenomenon [237] the technique is named Refl-EXAFS and has been widely used to characterize the structure of surface
species, thin films, epitaxial layers, buried interfaces, Langmuir Blodgett films etc… [505,529,580–603].

6. Microscopes

Atoms in matter are located at distances of the order of a few Å. Since human eyes can distinguish objects that are separated by at
least 0.1 mm, i.e. 106 Å, a row of one million atoms will be perceived as a single point by naked eyes. As a consequence, a microscope
is needed to observe the atomic structure of matter. The resolving power of a microscope, which describes its ability to image matter
at different length scales, mainly depends on the contrast mechanism. In a typical microscope the sample is mounted on a stage with
motorized movements for its precise positioning and rotation, as well as to adjust the magnification of the imaging system. The
detector registers the intensity distribution scattered by the sample and returns a direct or indirect (diffraction) image of the sample.

Fig. 44A shows the pictorial view of a cell nucleus under a microscope. When increasing the magnification, it is possible to
appreciate smaller details of the nucleus, such as the chromosome in Fig. 44B. By further increasing the magnification, and depending
on the resolving power of the microscope, the enlarged image could lose the finer details (Fig. 44C) or disclose the internal chro-
mosome structure (Fig. 44D), alias the DNA filament. Every microscope has a range of possible magnifications. It can reach an
ultimate resolution which corresponds to the shortest distance between two points of the object distinguishable as separate entities.

The contrast and resolution of the different microscopies, shown in Fig. 5, allow them to image matter from human organs down
to single atoms. Severe constraints on the experimental conditions have to be fulfilled. For example: fully hydrated 10 µm thick cells
can be imaged with label-free hard X-ray tomography at resolutions better than 50 nm (frozen if using soft X-rays [604]); they have to
be chemically fixed to be studied with light tomography at 200 nm resolution [605], often requiring dyes and labelling procedures;
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they have to be frozen and reduced to 50–100 nm thick sections to be investigated with electron cryo-tomography at 3–5 nm re-
solution [606].

6.1. Scanning X-ray microscopy

There are two possible types of microscopes: full-field and scanning microscopes. In full field microscopes the object is imaged as a
whole. In scanning microscopes the sample is illuminated by means of a focusing optics (see more in §6.1) moving the nano or micro
beam across different area of interest [158]. The image of the sample is obtained when the entire data collection is completed
(composite map).

The brilliance of the source, the focusing primary optics and the detector characteristics determine the acquisition time to achieve
a good signal to noise ratio, which affect the final data resolution.

Scanning X-ray Microscopy (SXM) with SAXS or WAXS contrast is an imaging technique widely used to inspect tissues or com-
posites materials made of soft and hard matter components [607–613]. Let’s consider a quite didactic example: type I collagen-
hydroxyapatite bi-phasic tissue. Type I collagen is a fibrous protein, present in several tissues (tendon, ligament, skin, cornea,
cartilage, bone, blood vessels, gut, and intervertebral disc), made of a hierarchic structure: molecular chains are grouped in fibrils
(10–300 nm in diameter) and the fibrils in micrometric fibers (5 µm in diameter), as shown in Fig. 45. When mineralized – like in
bones - the molecular chains are intercalated with hydroxyapatite (HA) nanocrystals in a self-assembled template. The hydro-
xyapatite (Ca5(PO4)3(OH)) nanocrystals have an hexagonal symmetry (space group P63/m, a= b= 9.432 Å, c= 6.881 Å) and form
nano-sized domains (50×25×2 nm). The fiber is well described as an unidimensional crystal with a characteristic periodicity along

Fig. 43. (a) Auger-detected SEXAFS μx(E) of I on Ag(1 1 1) surface at θ = 1/3 and 1–2 coverages (curves A and B, respectively) and standard
transmission-EXAFS μx(E) for bulk γ-AgI powder. (b) as (a) for the corresponding extracted k2χ(k) functions. The smoothed curves are retransformed
and filtered data, see part (d). (c) FT of the k2χ(k) reported in (b). (d) Back transformed data reported in (c) after filtering in the 1.6–3.8 Å interval.
Reproduced with permission from Ref. [559], copyright American Physical Society, 1978.
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Fig. 44. (a) Pictorial view of a cell nucleus under a microscope; (b) magnified image which allows to zoom onto a chromosome; (c) and (d) further
magnified images which allow to see a DNA filament with bad (c) or good contrast and resolution (d).

Fig. 45. Hierarchical structure of collagen: the molecular chains are grouped in fibrils (10–300 nm in diameter) and the fibrils in micrometric fibers
(5 µm in diameter). If mineralized – like in bones - the molecular chains are intercalated with hydroxyapatite (HA) nanocrystals (50×25×2 nm) in a
self-assembled template. The fiber is an unidimensional crystal with a characteristic periodicity along the fiber axis of about 67 nm. Partially
reprinted with permission from Ref. [153], copyright Elsevier, 2013.
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the fiber axis of about 67 nm. The HA nanocrystals have the [0 0 2] as elongation direction (c-axis). In typical mineralization
processes the nanocrystals are expected to form with collagen a unique template structure. Here, the nanocrystals are oriented with
the c-axis parallel to the collagen fiber axis (see Fig. 45). This hierarchical order could be altered in presence of demineralization
processes, diseases or structural defects. Therefore, it is worth to have a tool to inspect the actual tissue structure, also for diagnosis
purposes. A scanning microscopy experiment can be conceived by collecting diffraction signals with a micrometric X-ray probe across
a mm2/cm2 large area. The inspected area is laterally heterogeneous and statistically significant. In this precise system, two dif-
fraction signals have to be collected: the collagen diffraction due to the nanoscale 67 nm periodicity, occurring at very small scat-
tering angle (SAXS), and the diffraction from the HA nanocrystals whose atomic structure requires WAXS data. The SAXS and WAXS
data have to be collected from the same area, either contemporarily with two detectors or in sequence, to have point by point a spatial
correlation of the measurements. In the data, different information is encoded and the analysis of the SAXS and WAXS profiles can
quantitatively describe the explored area, probing morphological or structural changes across it.

For example, bone tissues were studied at the cSAXS beamline of the SLS synchrotron in Villigen, with a 30 × 30 µm2 beam spot
and a Pilatus detector placed sequentially at a sample distance of 7000 and 100 mm for SAXS and WAXS data collection, respectively
[614]. Before transforming the raw data into quantitative microscopies relevant structural features were identified (length scales): in
the SAXS data (Fig. 46A and B) the 67 nm periodicity along the collagen fiber axis was selected corresponding to the diffraction peak
at Δq1, or its third replica at Δq2; in the WAXS data (Fig. 46A,C) among the many peaks, indexed as the diffraction pattern of the HA
crystalline phase [152], the (002) and (210) reflections were chosen as relevant crystallographic planes of the HA nanocrystals (the
[002] direction being along the nanocrystal c-axis and the [210] perpendicular to it). Aim of this specific choice was to check the
relative alignment of the collagen fiber axis (Fig. 46B, dotted white line) with respect to the nanocrystal elongation axis (corre-
sponding to the [002] direction, Fig. 46C, dotted white line). The additional [210] direction was considered as internal check.
Specifically, raw data were collected in a whole area of 7 × 7 mm2 (Fig. 46D). Then, they were transformed into the microscopies in
Fig. 46E, F, G displaying point by point: the orientation of the collagen fiber (Fig. 46E) and of HA nanocrystals (Fig. 46F,G along the
[002] and [210] directions, respectively). Information encoded in these images are: (i) orientation of the collagen fibers/HA na-
nocrystals designated by the direction of the relevant sector within the colored wheel, with white assigned to un-oriented material;
(ii) the local presence (color) or absence (black) of collagen/HA tissue components per pixel; (iii) degree of orientation of the collagen
fibers/HA nanocrystals, determined as the brightness of the colors. The HA orientation is displayed both along the nanocrystal
elongation direction, i.e. the [002] crystallographic direction (Fig. 46F), and perpendicular to it, along the [210]direction (Fig. 46G).
A comparison of Fig. 46E and Fig. 46F immediately confirms that the c axis of the HA nanocrystals is parallel to the collagen fiber

Fig. 46. (a) SAXS meridional reflections due to the 67 nm periodicity along the collagen fiber axis (first Δq1 and Δq2 third replica in the inset) and
WAXS data indexed as the diffraction pattern of the HA crystalline phase ((002) and (210) reflections in the inset); (b) SAXS 2D pattern of the
collagen fiber (dotted white line is fiber axis); (c) WAXS 2D pattern of the nanocrystalline HA (dotted white line is the [002] elongation axis); (d)
raw SAXS data collected in the whole area of 7×7 mm2 ; microscopies displaying point by point the orientation of the collagen fiber (e) and of HA
nanocrystals (f,g). Reprinted with permission from Ref. [614], copyright International Union of Crystallography, 2014.
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axis, as expected from the literature [615,616]. The orthogonality of the [002] and [210] HA crystal axis orientations in Fig. 46F and
G confirms the reliability of the automated orientation extraction, performed on the as-collected 80.000 SAXS and WAXS frames.

This example is here provided to clarify the central role of this technique whenever tissue engineered nanostructured biomaterials
[616] have to be studied across statistically relevant areas to inspect the ultrastructure of an artificial smart hierarchical material in
comparison with the corresponding natural tissue. Modern nanotechnology is rich of examples of bio-inspired hierarchical template
tissues, based on the combination of an inorganic nanomaterial with proteins or polymers where this kind of characterization tool can
be crucial [617–620].

6.2. Lens-less and lens-based imaging microscopes

Full-field or scanning microscopes can be lens-based and lens-less, no aberration affected, imaging systems [606]. For lens-based,
the resolution is strongly affected by the objective lenses. The objective lens has to refocus the scattered waves with their associated
phases to build the image. Every lens is unfortunately affected by aberrations. Let’s consider an electron microscope of acceleration
voltage E = 200 keV (electron wavelength λ = 2.5 pm) and low spherical aberration coefficient objective lens
(Cs = 0.47 ± 0.01 mm). The lenses aberrations may worsen the resolution of about two orders of magnitude with respect to the
diffraction limit (~wavelength), becoming at optimum defocus 190 pm = 1.9 Å [621]. For lens-less imaging technique, as X-ray
crystallography, the diffracted wavefield freely propagates from sample to detector where it is registered. The diffracted intensity
contains only the modulus of the electron density distribution Fourier Transform. This pattern must to be inverted to recover an
image of the electron density distribution in real space. To perform this task one needs to recover the phase information (see more in
§5.3 and §5.4).

6.3. Coherent diffractive imaging and ptychography

An alternative to crystallography, for those cases when a crystal cannot be used, is Coherent Diffractive Imaging (CDI)
[154,205–211]. Let’s summarize first basic concepts about coherence. In general, the spatial coherence of a wave field describes the
correlation between wave phases at different points in space. Similarly, the temporal coherence describes the correlation or pre-
dictable relationship between wave phases observed at different moments in time.

Coherence is a measure of predictability. For scattered waves, it refers to the phase predictability of the phasor during wave
propagation. Precisely, high coherence means that the phase of a wave can be predicted exactly, incoherence that the phase cannot be
predicted at all, partial coherence that the phase can be predicted only approximately. Partial coherence is characterized by a
coherence length lc: the knowledge of the phase at a point x, allows the prediction of its evolution for points within a distance lc from
x. Typical X-ray sources, including also synchrotron sources, are intrinsically incoherent or partially coherent. For example, in the
anode of a Roentgen tube, electrons radiate from different places with slightly different wavelengths (within the emission band of the
anode) and at different times. Each electron, radiating from a source point, creates a coherent wave. Overall, the chaotically emitted
X-ray photons add incoherently. For a source with a transverse size d, coherence will exist over a small angular range θ ~ d/R where
R is the distance from the source and the spatial coherence length will be lc = Rλ/d [622]. An ideal point-like source (d = 0) is fully
spatially coherent (lc=∞). If the photons are emitted with the same frequency or wavelength (monochromatic source) the source will
be also temporally coherent. The longitudinal coherence length of the source will depend on the emitted wavelength band (Δλ) as
lo= ½ λ2/ Δλ [622]. Spatial or frequency filters, used to produce spatially or longitudinally coherent beams, cause massive loss of
intensity. The X-ray coherent beams, needed to perform experiments on non-periodic weakly scattering samples, are available only at
3rd generation synchrotron sources or Free Electron Lasers, thanks to the extremely high brilliance of these sources.

The first idea of X-ray CDI was due to David Sayre in 1952 [623]. About 50 years were needed to reach the proper technologic
level for the realization of the first experiment, dated 1999 by Miao and coworkers [624].

Differently from crystallography, lacking the crystal, coherent X-ray beams are needed. In analogy to crystallography, the dif-
fracted pattern must be phase-retrieved to reconstruct the electronic density information. The short X-ray wavelength of the hard X-
rays employed for CDI experiments allows, at least in principle, to reach atomic resolutions. However, the real final resolution
depends on several practical conditions (brilliance of the source, efficiency of the primary optics, thermal and mechanical stability of
the setup, sample radiation damage, sample scattering factor, numerical aperture and dynamics of the detector, photon noise etc).
When imaging non crystalline matter, the amplification effect due to the crystal periodicity is lost. Therefore, the diffracted wavefield
is expected to be extremely faint, broad and buried into the background. This is why intense coherent X-rays beams are required.
However, especially with soft-matter systems, the high photon flux typically imposes serious problems of radiation damage. This can
affect the dynamics and, in more severe cases, the sample static properties (the morphology) as well. A tradeoff between photon flux
and illumination time must be achieved.

Several CDI methods are available today: Plane-wave CDI [625–627] Bragg CDI;[628,629]; Ptychographic CDI [630–632];
Fresnel/Keyhole CDI [633–635]; Reflection CDI [636,637]; Electron CDI [638–644].

Plane-wave CDI (PCDI) was adopted for cell tomography,[645,646] Bragg CDI (BCDI) [647–649] and electron CDI [638–640]
were used for size and strain analysis of single nanocrystals [649] or to study dislocations or even to image lysosome protein crystal
[650].

Ptychography [651,652] is the method which combines CDI and SXM (see § 3.2). It is used to probe extended samples, crystalline
or not, with coherent X-ray beams. When dealing with crystalline matter, Ptychography can be used also in Bragg diffraction to
inspect local strain fields or lattice defects and plastic deformation with nano-scaled probes [653,654]. Operando and in-situ studies
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on planar devices have been realized [653,655,656] and the technique has been also used for 3D tomographic reconstructions
[632,657–659].

Liquid samples loaded into cells or capillaries, as well as natural and engineered tissues or nanomaterials embedded in some
transparent matrices are typical examples of specimens worth to be explored with CDI [660–666]. In these cases, a typical forward
transmission geometry is adopted, as for SAXS data collection, realizing a coherent SAXS experiment. Future fourth generation X-ray
sources will allow to push further the limits of this imaging technique in terms of: better resolution (single cell imaging at 16 nm
resolution was recently achieved [667]), larger volumes (a chip of 150 × 150 µm2 was imaged at 5 nm resolution [659]) and
dynamics for faster scanning [668].

6.4. Speckles

There are precise advantages in illuminating matter with a coherent beam.
Fig. 47A–C show the same object under different rotation angles. The Fourier transform modulus of the object density is displayed

for each of them in Fig. 47E–G respectively. We mimic in this calculation the effect of illuminating this structure with a plane wave,
i.e. with a coherent wavefield. The diffraction patterns are continuous, because of the finite size of the object, and ‘speckled’ i.e. they
are spotty. Speckles depend on the actual structure and orientation of the illuminated object. Indeed, by a simple 3D rotation, the
speckles’ structure changes accordingly. Fig. 47D shows the same object as in Fig. 47A but with a missing portion (defect), and the
related Fourier transform modulus which presents a different speckled pattern (Fig. 47H). Clearly this is an ideal experiment, as in
reality the diffraction pattern of a single object is so faint and broad that an extremely intense beam is stringently needed to collect it,
out of the background. Indeed, when the crystal amplification effect is absent a continuous diffraction intensity pattern is awaited.
However, the calculation indicates that collecting and inverting such a diffraction pattern would allow us to appreciate structural
changes in the original structure, decoding defects or even the exact orientation of the illuminated object. Speckled diffraction
patterns are registered whenever matter is illuminated with coherent X-ray beams. The position and relative intensity of the speckles
correspond to the scattering objects non-periodic position in real space.

Therefore, whatever material could be studied independently of its crystallinity by using a coherent X-ray photon beam. The real
limitation of such a choice is given by the actual spatial resolution achievable which depends on the scattering power and radiation
damage of the material and the specific experimental conditions (X-ray wavelength, detector, optics, sample environment).

6.5. The Nyquist-Shannon sampling theorem and the phase problem

We learned in §3 that the structure factor of a crystal, namely the FT of the crystal electron density, is the product of the unit cell
structure factor multiplied by the lattice sum, Eq. (22). The unit cell electron density is the function to reconstruct, which is non-zero
in the cell of size a. The Shannon sampling theorem [669,670] states that a function which is non-zero within an interval a can be
fully reconstructed by sampling its FT at a spacing 1/a, corresponding to the inverse size of the scattering object (Nyquist frequency)
[367]. Unfortunately, the measured diffracted intensity is not directly the structure factor, which is a complex function. The dif-
fracted intensity is proportional only to the squared structure-factor modulus and there is no way to measure the phase of the

Fig. 47. (a),(b),(c) show three structures under different rotation angles, (d) same structure but with a missing section; (e),(f),(g) and (h) speckled
diffraction patterns corresponding to the (a),(b),(c) and (d) structures, respectively.
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structure factor which is lost in the experimental data collection (phase problem). The inverse FT of the measured diffracted intensity,
without any phase information, is a modulus-only Fourier synthesis. The inverse FT of q|F( )|2 coincides with the autocorrelation
function =x xA( ) (x) ( ) of the unit cell electron density, which has a size 2a. The Shannon sampling theorem, applied to this
function, would require its sampling in Fourier space (reciprocal space) with a step 1/2a to fully reconstruct it everywhere, but in
between the Bragg peaks there in only a background signal, due to a destructive interference of secondary waves scattered by the
ordered unit cells. Solving the phase problem is the task of crystallography. In order to reach this objective further additional
structural information has to be added to constrain the phase retrieval problem, such as the positivity and the atomicity of the
unknown crystal unit-cell electron density. Indeed, inverting an under-sampled (Bragg) diffraction pattern is an ill-posed mathe-
matical problem. However, many theoretical approaches and algorithms have been realized to solve this issue with success in the last
100 years of crystallography [671].

When we are not dealing with periodic structures an alternative way to constrain phase retrieval problems, to reach the correct
scattering function, is by oversampling the diffraction pattern [653,654]. Oversampling means to collect the diffraction pattern at a
frequency higher than the Nyquist one corresponding to the size a of the scattering object.

Fig. 48A and B shows a single C60 molecule of size a, ρ(x), and the modulus of the simulated molecular form factor, |FT[ρ(x)]|,
respectively (see § 2.4). The inverse FT of FT[ρ(x)|2 is related to the autocorrelation function of ρ(x), shown in Fig. 48C The auto-
correlation function of ρ(x), =A x x x( ) ( ) ( ), has a size 2a [669,670].

The autocorrelation function A(x) of isolated scattering objects becomes, for crystals, the Patterson function P(x). Both can be
deconvolved to solve the phase problem in the direct (object) space [672]. The auto-correlation deconvolution method consists in the
translation of A(x) in discrete positions xMi, with xMi selected among the most intense secondary maxima of A(x), and in the com-
putation of the product between of A(x) and its translated replicas A(x-xM1) × A(x-xM2)×…. Fig. 49A–D shows the original and the
deconvoluted autocorrelation functions after three, six and nine intersections, respectively. At nine intersections, in the simple
example under study, the original scattering function, ρ(x), is fully recovered. Fig. 49E shows the overlapping of ρ(x) and A(x), and
that ρ(x) was contained in A(x). Fig. 49F is the drawing of the C60 atomic model, displayed in the same orientation chosen to simulate
the molecule form factor used in the calculations. For periodic structures, the Patterson function P(x) is an aliased version of the auto-
correlation function A(x) that can be associated to one unit cell. For this reason, P(x) deconvolution can be only partially achieved.
Nevertheless even the structure of big proteins can be correctly retrieved by using the partial P(x) deconvolution to obtain a starting
phase set that has to be refined via suitable iterative phasing algorithms [673].

6.6. Iterative image-recovery algorithms

Another method to solve the phase problem is based on the use of iterative recovery algorithms which suitable constraints
adopted in the direct (object) space and in the Fourier space. CDI experiments are realized with lens-less set-up, i.e. without in-
troducing any optics between sample and detector. As a consequence, algorithms are needed, in order to transform diffraction data in
the object image in real space [674–676]. Phase retrieval algorithms start from raw data |F(q)|2 and guessed phases (steps 1 and 2 in
Fig. 50) and give an initial approximate value of the electron density (x) which is then refined in successive iterative cycles. Several
algorithms are available today; the hybrid input-output (HIO) and the error reduction (ER) are among the first developed ones
[677–679]. Any algorithm makes use of two, or more, different constraints. For example, for the error reduction algorithm one has

– a support constraint in the object space, which automatically means to fix within a defined support region S the overall object
position and physical extent, thus defining also the complementary no-scattering region, i.e., (x) → Ps[ (x)], with Ps(x) = 1 for
x ∈ S, Ps(x) = 0 otherwise.

– a modulus projection in its dual space (Fourier space), which means placing |F(q)|2 equals to the measured intensity pattern
(Fourier constraint), keeping unchanged the phases obtained by means of the FT of Ps [ (x)].

Suitable Figure of Merits, which measure the reconstruction error both in real and Fourier space, help to monitor the convergence
of the phasing algorithm towards a reliable solution.

Standard phasing approaches, such as the HIO, are deterministic iterative algorithms, which, going back and forth from the real to

Fig. 48. (a) Electron density ρ(x) of an object of size a (C60 molecule); (b) modulus of the Fourier Transform of ρ(x), FT(ρ(x), i.e. modulus of the
form factor of the C60 molecule; (c) inverse FT of F q| ( )|2 which coincides with the autocorrelation function =A x x x( ) ( ) ( ) of the scattering
function.
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the Fourier space, try to optimize a specific error function. For this reason they suffer from stagnation mainly due to the incomplete
knowledge of the support S and the scattering moduli. A recent and very promising approach is based on a more efficient exploration
of the space of solutions through a stochastic search based on a smart use of Genetic Algorithms (GA). A new solution to the phase
problem has been individuated in memetic algorithms which are hybrid GAs which exploit the synergy of deterministic – e.g. HIO –

Fig. 49. (a) Auto-correlation A(x) obtained by the C60 molecule in a high-symmetry orientation; (b) partial deconvolution of A(x) after three
intersections; (c) partial deconvolution of A(x) after six intersections; (d) full deconvolution of A(x) after nine intersections; (e) overlapping of
scattering function ρ(x) and autocorrelation function A(x); (f) drawing of the C60 atomic model, to show the particular orientation chosen for the
C60 molecule to simulate its A(x).

Fig. 50. Phase retrieval algorithms: here the error reduction is shown, which starting from the raw data F q| ( )|2 and initial guessed phases allow to
find the electron density x( ). Previously unpublished figure.
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and stochastic optimization methods [680]. To overcome stagnation into local minima, it is useful to introduce local iterative de-
terministic phase retrieval procedures as self-improvement operations. For this reason, the new proposed phasing approach is called
Memetic Phase Retrieval (MPR). The standard deterministic phasing approach can be seen as a MPR without the genetic operators
Selection, Crossover andMutation. Any deterministic phase retrieval algorithm can be implemented in MPR. For example the use of ER
and HIO algorithms as self-improvement operations has been recently exploited in a MPR framework in [680]. The Selection process
is a delicate step in the Evolution process. A selection strongly favoring only the better elements – i.e., elements with the better fitness
value – will improve the convergence speed, but the algorithm will suffer with stagnation in local minima. On the other side, a
selection process that weakly favors better elements will have, instead, an unstable convergence and will require an excessive length
of time to find the solution. In the Natural Evolution process, the Crossover operation is the mixing of the parents’ genetic pool.
Crossover can be tuned by means of a suitable parameter G, which can be called genetic fraction. It has values between 0 and 1G= 1
means that all of the parent population is replaced by the sons, while G= 0 means that no sons are created, the genetic operators are
switched off and we get a situation equivalent to the standard deterministic approach. Mutation means that very element in the
population may be subjected to a stochastic modification. It can be also switched off, by using only Selection and Crossover genetic
operations. The implementation in three dimension of fast phasing GAs is a challenge for the next future but, also it will constitute a
very promising tool for reaching global minima in complex phase retrieval problems which usually occurs in X-ray and electron lens-
less microscopies.

6.7. Non periodically assembled nanocrystals

Composite materials based on polymers mixed with nanocrystals are in the focus of many recent research studies, including
catalysis [681–684]. When polymers are extremely thin, few tenths of nanometers, scanning electron microscopy is the widely and
more efficient imaging method to explore the architectures of the nanocrystals in the polymers. In the case of CdSe/CdS octapod-
shaped nanocrystals self-assembly in polystyrene (PS) films the NCs tend to aggregate into linear arrays of particles, as revealed by
transmission electron microscopy (TEM). However, when the octapods are embedded in free-standing PS films, several µm thick, they
cannot be imaged through standard imaging techniques (such as TEM). Therefore, it is not possible to draw any conclusion on
whether chain-like assemblies were still formed in polymers in such circumstances.

An imaging technique with nanometric resolution, able to explore several micron thick polymers, is needed. X-ray Ptychography
(see Section 3.4.) is therefore the technique of choice in this case, being able to penetrate such thick specimens and to investigate non
periodic extended assembly of objects with nanometric resolution. The experiments here reported [685] were performed at the cSAXS
beamline of the Swiss Light Source in Villigen, on selected different samples: without polymer (OCT sample), thin octapod/PS films,
with molecular weights (Mw) of 190 and 350 kg/mol, named PS190_thin and PS350_thin, and 24 µm free-standing octapod/PS films,
named PS190 and PS350.

Fig. 51A shows a schematic description of the set-up where a Fresnel Zone Plate (see Section 5.2.4) was used to focus a 450 nm
beam onto the sample and a total scanned area of 4 × 4 µm2 was explored. Images of the phase retardation obtained by phase
retrieval of the data are displayed in Fig. 51B. A quantitative comparison of the maximum phase retardation (Δϕ) is reported in the
Table with the polymer thickness (tPS). The Δϕ values represent the phase shift contribution due to the NCs with respect to the phase
retardation caused by the polymer matrix. It is interesting to note that ptychography allowed to visualize the self-assembly of
octapods into linear and interconnected structures at the resolution of about 25 nm. Ptychographic data were used to explore the
effect on the octapod aggregation of: (i) different polymer film thickness for the same polymer molecular weight in the PS350_thin
and PS350 samples; and (ii) different molecular weights, for the same thickness of the polymer film in the PS350 and PS190 samples.
The results from the analysis suggested that the octapods are connected through a network and their distribution in the polymer films
is influenced by the molecular weight of the polymer and by the thickness of the resulting composite film.

This example evidences the potential use of the ptycography for the analysis of nanostructures in polymer matrices.
The next and last example concerns the possibility to use coherent X-rays in a CDI experiment on non-periodic self-assembly of

Fe2P nanocrystals [686]. With respect to the previous case, the nanocrystals are grouped into an isolated object, as the result of a free
evaporation of the nanocrystals dropped from solution. A sketch of the optical scheme of the experiment, performed at the ID10 ESRF
beamline, is reported in Fig. 52A (distance in meters). 2D diffraction patterns were taken for the sample tilts between −72 and +72◦
with a step of 2◦. Top and side views of the reconstructed 3D image of the cluster is shown in Fig. 52B and compared with the SEM
image in Fig. 52C. The 3D image resolution (59 nm) is not sufficient to resolve the individual nanorods forming the aggregate but we
can easily identify the dense aggregates and voids in Fig. 52B. The formation of voids and high density areas on the top and in the
middle of the cluster is driven by complex fluid hydrodynamics in the evaporating sessile drop.

7. Summary

In this review we provide the theoretical basis of well-known X-ray scattering and spectroscopy methods, available today for the
nanoscience community to characterize materials across different length scales from atomic to mesoscale. A fairly large number of
dedicated examples performed on nanomaterials are also reported to elucidate the benefit and complementarity of the different
techniques. Some of the examples are related to soft matter, such as peptide-base nanostructures or hybrid inorganic-organic ma-
terials, but most of them refer to inorganic materials. Nanomaterials, or more in general nanostructures, can be dispersed in solutions
(such as nanocrystals, liposomes, hydrogels for biomedical applications), embedded in different matrixes (such as meso-/nano-porous
materials, polymers or in tissues) or deposited on top of surfaces or underneath them (nanostructured surfaces, planar devices).
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Depending on their specific status they can be measured in: (i) transmission geometry, e.g. XAS (see 4.1), SAXS or WAXS data
collection as well as with SXM with SAXS or WAXS contrast (see 6.1) or X-ray ptychography or CDI (see 6.3); (ii) in reflection
geometry, e.g. GISAXS and GIWAXS, GI standing for Grazing Incidence [687], Bragg CDI [647,648] or reflection EXAFS (see 5.5.2).

Whenever structural or morphological properties change locally (spatial inhomogeneity), a focused X-ray beam becomes highly
beneficial [160]. The eventual lack of any crystal coherence in the material to investigate requires a mandatory use of coherent X-ray
beams. Nowadays, at 3rd and 4th generation synchrotrons or Free Electron lasers across the world, the first beamlines offer on-site
combined scattering and spectroscopic techniques. As a very recent example, the Spectroscopy and Coherent Scattering (SCS)
beamline at the XFEL in Hamburg will enable time-resolved experiments to unravel the electronic and structural properties of soft
matter magnetic materials and complex structures. The most advanced and powerful X-ray sources allow today to realize in situ
experiments with spatial resolution of few nanometers and time resolution of few femtoseconds. This means that we can foresee
experiments to study processes such as electron-transfer dynamics or phonon propagations (time scale ~1–10 ps), energy transfer
from electron to lattice, electronic transitions, atomic motions (time scale ~1–50 fs), and to follow chemical transformations in
heterogeneous catalysis in real time [688] even illuminating a single nanocrystal [689]. Goals to be still reached concern, for
example, how to benefit of the actual spatial and temporal resolution for in situ/operando fancy experiments but keeping under
control the unavoidable radiation damage [160] or how to scan across larger and larger areas at the highest speed without com-
promising sample stability. A price to pay is definitively the amount of data collected in a single experimental run which can even
reach petabytes (1015 bytes). This enormous amount of data will require a posteriori data approaches typical of the Artificial In-
telligence research network [690], which means that increasingly large demand of interdisciplinary requirements will come into play
for the new coming research decades.
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