

1st on-line School on Synchrotron Radiation "Gilberto Vlaic": Fundamentals, Methods and Application 17th September 2021

Elettra Sincrotrone Trieste

Synchrotron radiation-based X-ray methods and vibrational spectroscopy techniques for the study of cultural heritage materials: a multi-method and multi-scale approach Letizia Monico

CNR-Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) (Perugia, Italy)

letizia.monico@cnr.it

1-SR-based X-ray methods for cultural heritage objects*

Cultural heritage objects: heterogeneous and composite systems, in the most of cases composed of <u>multiple</u> layers, whose thickness can achieve values of a few micrometers.

Subject to chemical transformations, often involving changes of the oxidation state of elements and formation of polymorphs.

> SR-based X-ray methods (imaging/mapping and single-point analysis mode): possibility of obtaining information about the chemical nature and distribution of different phases down to the sub-micrometer scale length.

a) micro-X-ray fluorescence (µ-XRF) for elemental microanalysis down to the sub-ppm level.

b) micro-X-ray absorption spectroscopy (µ-XAS) for probing the local chemical environment (oxidation state, coordination numbers, site symmetry and distortion, bond distances) of selected elements; it can be equally applied on amorphous or crystalline materials.

c) micro-X-ray diffraction (µ-XRD) for obtaining long range order information about the presence and nature of crystalline phases.

* M. Cotte *et al., Accounts of chemical research* 43 (2010) 705-714; L. Bertrand *et al., Appl. Phys. A* 106 (2012) 377–396; K. Janssens *et al., Annu. Rev. Anal. Chem.* 6 (2013) 399–425; K. Janssens *et al., Top. Curr. Chem.* 374(6) (2016), doi:10.1007/s41061-016-0079-2; M. Cotte *et al., JAAS* 32 (2017) 477–493; V. Gonzalez *et al., Chem. Eur. J.* 26 (2020) 1703 –1719; S. Quartieri, Synchrotron Radiation in Art, Archaelogy and Cultural Heritage. In *Synchrotron Radiation - Basics, Methods and Applications* (S. Mobilio, F. Boscehrini, C. Meneghini Eds.), Springer (2015), pp. 677-695.

1-Case studies and SR facilities

Alteration mechanism of pigments in oil paintings

- discoloration of cadmium yellows
- darkening of chrome yellows
- fading of Prussian blue

- Color change due to redox processes

ID21/ID26 beamline

Marine Cotte Wout De Nolf Lucia Amidani Pieter Glatzel

P06-PETRA III beamline

Gerald Falkenberg Jan Garrevoet

XFM beamline

Alteration mechanism of pigments in oil paintings

±± 11

2-Chromatic alteration of some yellow and blue pigments

Darkening of chrome yellows (PbCr_{1-x}S_xO₄)

Van Gogh Museum Amsterdam Sunflowers (V. van Gogh, 1889, Van Gogh Museum, Amsterdam)

Discoloration of cadmium yellows (CdS/Cd_{1-x}Zn_xS)

The Scream (ca. 1910) (E. Munch, Munch Museum, Oslo) MUNCH MUSEET

Fading of Prussian Blue [MFe^{III}[Fe^{III}(CN)₆]·xH₂O, M= K+, NH₄+ or Na+]

View of Lake Sortedam from Dosseringen Looking Towards the Suburb Nørrebro outside Copenhagen (Christen Købke, 1838, Statens Museum for Kunst, Copenhagen)

Why and *how* such alteration processes take place?

Developing strategies to prevent/mitigate the degradation processes
Optimizing strategies for the long-term conservation of paintings

Decreasing of length-scale

Micro-scale SR-based X-ray methods μ-FTIR, μ- Raman (Bench-top devices)

2- Methodological approach: MULTI-MATERIAL

Study of pigments and paint mock-ups

Discoloration of cadmium yellows

3-Discoloration of cadmium yellows (CdS/Cd_{1-x}Zn_xS)

White globules at the exposed yellow paint surface

Museum, Otterlo, NL) altered altered Joy of Life (1905, Henri Foundation Philadelphia, USA)

^(a) G. Van der Snickt et al., Anal. Chem., 81 (2009) 2600–2610; ^(b) G. Van der Snickt et al., Anal. Chem. 84 (2012) 10221-10228; ^(c) E. Pouyet et al., Applied Physics A 121 (2015) 967-980; ^(d) L. Monico et al., Chem. Eur. J. 24 (2018), 11584-11593.

3-The Scream (ca. 1910) by E. Munch

SCIENCE ADVANCES | RESEARCH ARTICLE

CHEMISTRY

Probing the chemistry of CdS paints in *The Scream* by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques

Letizia Monico^{1,2,3}*, Laura Cartechini^{1,2}, Francesca Rosi^{1,2}, Annalisa Chieli^{1,2}, Chiara Grazia^{1,2}, Steven De Meyer³, Gert Nuyts³, Frederik Vanmeert³, Koen Janssens^{3,4}, Marine Cotte^{5,6}, Wout De Nolf⁵, Gerald Falkenberg⁷, Irina Crina Anca Sandu⁸, Eva Storevik Tveit⁸, Jennifer Mass^{9,10}, Renato Pereira de Freitas^{1,11}, Aldo Romani^{1,2}, Costanza Miliani^{1,2,12}* Monico *et al., Sci. Adv.* 2020; **6** : eaay3514 15 May 2020

3-Fading and flaking issues of cadmium yellow paints

Analysis of a series of microflakes lost/fallen down from a flaked-off cadmium yellow area

3-Evaluation of the effects of moisture and chloride-species

3-Early 20th century historical powder

Unaged Aged

Thin section (thickness ~ 2µm)

µ-XRD (transmission mode)

3- Munch's paint tube (LF G 2.4)

Co-localization of cadmium sulfate with Cl-compounds

MUNCH MUSEET ► High moisture conditions (RH≥95%) promote the formation of Cd/S^{VI} and Na/S^{VI} aggregates along with smaller amount of sulfites;

CI-compounds, originally homogenously distributed throughout the paint, become localized in the Cd/S^{VI} aggregates.

L. Monico et al., Science Advances 6 (2020), eaay3514

Size map (h×v): 958.8x302.2 µm² Step size (h×v): 0.65×0.65 µm²

3 - Alternative route of formation of CdSO₄

Presence of Na₂SO₄ and other water soluble Cl-compounds (i.e., KCl, NaCl...) correlated to the starting reagents used for the synthesis of cadmium yellows

3 - Alternative route of formation of CdSO₄

S-I SV

Darkening of chrome yellows

4- Darkening of chrome yellows (PbCr_{1-x}S_xO₄)*

Characterized by low photochemical stability with tendency to lose their original brilliant yellow color.

- Darkening due to a (photo)reduction process: Cr^{vi} → Crⁱⁱⁱ
- Cr-reduction depends on:
 - a) Cr:S stoichiometry
 - b) Crystalline structure
 - c) Binding medium
 - d) Solubility of lead chromate-type

*L. Monico *et al., Anal. Chem.* 83 (2011) 1214–1223; L. Monico *et al., Anal. Chem.* 83 (2011) 1224-1231; L. Monico *et al., Anal. Chem.* 85 (2013) 860-867; L. Monico *et al., Anal. Chem.* 86 (2014) 10804–10811; L. Monico *et al., JAAS* 30 (2015) 613-626; L. Monico *et al., JAAS* 30 (2015) 1500-1510; L. Monico *et al., Angew. Chem. Int. Ed.* 54 (2015) 13923-13927; L. Monico *et al., ACS Omega* 4 (2019) 6607-6619.

4-Cr speciation investigations: Cr K-edge XANES

>Cr(VI) compounds: non-centrosymmetric tetrahedral coordination.

>Cr(III) compounds: centrosymmetric octahedral geometry.

➢Pre-edge peak area proportional to the relative amount of Cr(VI).

Shift of the absorption edge position towards higher energies: *increase of the valency* of the absorbing atom and/or of the *electronegativity* of the nearest neighbour atoms.

>Identification of specific reduced Cr-compounds challenging, when different Cr-species are co-present.

Amsterdam

University

2019

Press

Van Gogh's

Sunflowers

Illuminated

Van Gogh Museum Stu

Art Meets Science

A X U X

4-Van Gogh's Sunflowers (Amsterdam version)

Angewandte Chemie

Evidence for Degradation of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques

Letizia Monico,* Koen Janssens, Ella Hendriks, Frederik Vanmeert, Geert Van der Snickt, Marine Cotte, Gerald Falkenberg, Brunetto Giovanni Brunetti, and Costanza Miliani

Angew. Chem. 2015, 127, 14129–14133

Chemical Mapping by Macroscopic X-ray Powder Diffraction (MA-XRPD) of Van Gogh's *Sunflowers*: Identification of Areas with Higher Degradation Risk

Frederik Vanmeert,* Ella Hendriks, Geert Van der Snickt, Letizia Monico, Joris Dik, and Koen Janssens

Angew. Chem. Int. Ed. 2018, 57, 7418–7422

4-Cr speciation analyses: aged paint mock-ups & historical paint micro-samples*

Sunflowers (F458, January 1880 Van Gogh Museum)

*L. Monico *et al., Anal. Chem.* 85 (2013) 860-867; L. Monico *et al., JAAS* 30 (2015) 1500-1510; L. Monico *et al., Angew. Chem. Int. Ed.* 54 (2015) 13923-13927.

ID21

ESRF

* L. Monico et al., JAAS 30 (2015) 613-626.

4-Cr K-edge full field-XANES imaging of chromate-based yellows

> FF-XANES imaging of chrome yellow samples?

Challenging/not possible due to the matrix composition ($PbCr_{1-x}S_xO_4$):

- presence of Pb
- Cr concentration

 K_2CrO_4 +linseed oil (naturally aged for 4 months)

light-sensitive chrome yellow pigments

4-Cr K-edge full field-XANES imaging of chromate-based yellows

L. Monico et al., ACS Omega 4 (2019) 6607-6619.

4- Cr-K_β XES/ Cr K-edge HERFD-XANES (ID26)

4-Cr-speciation mapping (ID21)

Formation of an amorphous phase (clearly visible for PbCrO₄—oil).

Loss of crystalline structure (decreasing of the intensity of the diffraction signals);

It is more pronounced for the sulfate-richer phases;

L. Monico et al., Anal. Chem. 92 (2020) 14164-14173.

4-Mitigation strategies: optimization of the fluence/dose

> Assessment of the fluence/dose threshold at which X-rays start to induce spectral changes in the data;

Beamline	Energy (keV)	Fluence threshold (ph/μm²)	Absorbed dose threshold (MGy)
ESRF-ID21	~6	~5×10 ¹¹	~2×10 ⁴
ESRF-ID26	~6	~10 ⁸	~10
DESY-P06	21	~1-2×10 ¹¹	~2-4×10 ³

- Adapt time to stay below the established threshold value (fast-data acquisition ID26 beamline);
- Decreasing the flux of the incoming beam (e.g., using attenuators of different thickness) as long as an adequate signal-to-noise-ratio is maintained;
- Defocusing the beam to minimize the fluence/dose to the sample, but sometimes at the expense of spectral resolution (e.g., XES analysis).

L. Monico et al., Anal. Chem. 92 (2020) 14164-14173.

4-Mitigation strategies: measuring under vacuum conditions

> Different extent of photo-induced reduction for similar doses (different fluence/dose threshold);

Beamline	Energy (keV)	Fluence threshold (ph/µm²)	Absorbed dose threshold (MGy)	Vacuum
ESRF-ID21	~6	~5×10 ¹¹	~2×10 ⁴	Yes
ESRF-ID26	~6	~10 ⁸	~10	No
DESY-P06	21	~1-2×10 ¹¹	~2-4×10 ³	No

> vacuum conditions: can explain the lower Cr^{III}-abundances obtained at ESRF-ID21;

such sample environment may contribute to indirectly slowing down Cr-reduction due to the absence/neglectable content of air gases (e.g., O₂) and moisture, which favor the oxidative degradation of the binder.

L. Monico et al., Anal. Chem. 92 (2020) 14164-14173.

4-Mitigation strategies: lowering the temperature

Fading of Prussian blue

5-Prussian blue (PB) fading in Danish Golden Age paintings (19th c.) CATS

PB: mixed valence transition metal compound characterized by hydrated iron(III) hexacyanoferrate(II) complexes [*Fe₄^{III}*[*Fe^{III}*(*CN*)₆]₃·*xH*₂*O or MFe^{III}*[*Fe^{III}*(*CN*)₆]·*xH*₂*O, M: K*⁺, *NH*₄⁺, *Na*⁺];
intense blue coloration due to an intervalence charge transfer between the Fe(II) and Fe(III) ions bridged by the CN⁻ ligand.

fading due to a photo-redox process that breaks the electron transfer
Fe^{II}–CN–Fe^{III} pathway. ^(b)

- Research question:

Is the fading due to $Fe^{III} \rightarrow Fe^{II}$ reduction?

- Experimental challenges:

a) PB is sensitive towards the exposure to X-ray microprobes;^(c-e)

 b) pigment diluted (low Fe concentration) in a lead white-rich matrix (FF-XANES imaging challenging/not possible)

View of Lake Sortedam from Dosseringen Looking Towards the Suburb Nørrebro outside Copenhagen (1838, C. Købke; SMK, Copenhagen, DK).^{(a),(f)}

^(a) A. Vila *et al.*, in: "Science and Art: The Painted Surface" (Eds: A. Sgamellotti, B. G. Brunetti, C. Miliani), RSC, London, 2014, pp. 354-372; ^(b) L. Samain *et al.*, JAAS 26 (2011) 930–941 and 28 (2013) 524–535; ^(c) C. Gervais *et al.*, JAAS 28 (2013) 1600-1609; ^(d) C. Gervais *et al.*, Langmuir 31 (2015) 8168-8175; ^(e) C. Gervais *et al.*, Appl. Physics A 121 (2015) 949-955; ^(f) D. Buti *et al.*, Probing the fading of Prussian blue: from the macro non-invasive approach to the micro SR-based analysis. In *Gordon Research Conference: Scientific Methods in Cultural Heritage Research* (2018).

5- Assessment of the photostability of PB : Fe K-edge XANES

5-PB faded paint cross-sections: multiple energies 2D μ -XRF mapping + single

point µ-XANES at Fe K-edge

ID21

ESRF

Step size (v×h): $0.3 \times 0.5 \ \mu m^2$ Map size (v×h): $64.5 \times 33 \ \mu m^2$ Exposure time: 100 ms/pixel Fluence (3 energies): $1 \times 10^9 \ ph/\mu m^2$

^(a) C. Gervais *et al., Langmuir* 31 (2015) 8168-8175; ^(b) L. Samain *et al., J. Synchrotron Rad.* 20 (2013) 460 – 473.

5-Fe K-edge XANES of reference compounds

Selected energies not suitable for the selective excitation of either Fe^{II}- or Fe^{III} –species

ID21

ESRF

LOOKING BACKWARDS

how the painting looked from the moment it was finished?

LOOKING INTO THE FUTURE

What we can do now for preventing the degradation?

Acknowledgments

> A particular acknowledgment for the financial support from:

IPERION-CH (EU H2020-INFRAIA-2014-2015, Grant No. 654028)

CHARISMA (EU FP7 programme, Grant No. 228330)

CALIPSOPIUS (EU H2020-Research and Innovation, Grant No. 730872)

AMIS-Dipartimenti di Eccellenza 2018-2022 (funded by MIUR and University of Perugia)

ESRF (exps. EC-504, EC-799, EC-1051, HG-18, HG-26, HG-32, HG-64, HG-95, HG-98, HG107, HG-129 and in- house beamtimes)

DESY-PETRA III (exps. I-20130221 EC , I-20160126 EC, I-20160672 EC and I-20170721 EC)

Australian synchrotron (exp. M-4604)

FWO (Brussels) (projects no. G.0C12.13, G.0704.08, G.01769.09, G.0566.19N and G.0547.19N)

BELSPO (Brussels) "S2-ART" (SD04A)

GOA "SOLARPAINT" (Research Fund Antwerp University: BOF-2015)

Fund Inbev-Baillet Latour (Brussels)

