THz SASE and seeded FEL at Photo Injector Test facility at DESY in Zeuthen (PITZ)

PITZ developments on THz source for pump-probe experiments at the European XFEL

Mikhail Krasilnikov for THz@PITZ team LEDS2023, ENEA Frascati, 03.10.2023

HELMHOLTZ

THz@PITZ Team and Collaboration

Proof-of-principle experiment on high power THz source

DESY Zeuthen

- Z. Aboulbanine*
- G. Adhikari*
- N. Aftab
- P. Boonpornprasert
- G. Georgiev*
- J. Good
- M. Gross
- A. Hoffmann
- E. Kongmon
- M. Krasilnikov
- X.-K. Li
- A. Lueangaramwong*
- R. Niemczyk*
- A. Oppelt
- H. Qian*
- C. Richard
- F. Stephan
- G. Vashchenko
- T. Weilbach*
- * \rightarrow left PITZ for other lab

- Engineers and Technicians:
- R. General
- L. Heuchling
- M. Homann
- L. Jachmann,
- D. Kalantaryan
- W. Köhler
- G. Koss
- S. Maschmann
- D. Melkumyan
 - F. Müller
- R. Netzel
- B. Petrosyan
- S. Philipp
- M. Pohl
- C. Rüger
- A. Sandmann-Lemm
- M. Schade
- E. Schmal
- J. Schultze
- S. Weisse

SLAC

- A. Brachmann
- N. Holtkamp
- H.-D. Nuhn

DESY Hamburg

- E. Schneidmiller
- M. Yurkov
- B. Krause
- M. Tischer
- P. Vagin

Uni Hamburg

- J. Rossbach
- W. Hillert

THz SASE FEL source for pump-probe experiments at European XFEL

PITZ-like accelerator can enable high-power, tunable, synchronized THz radiation

Proof-of-principle experiment on THz SASE FEL at PITZ

Using LCLS-I undulators (available on loan from SLAC)

Some Properties of the LCLS-I undulator

planar hybrid (NdFeB)	

Proposal "Conceptual design of a THz source for pump-probe experiments at the European XFEL based on a PITZ-like photo injector" has been supported by the E-XFEL Management Board \rightarrow dedicated R&D activities at PITZ \rightarrow Proof-ofprinciple experiments (2019-2023)

$\lambda_{rad}{\sim}100\mu m \rightarrow {\sim}17 MeV/c$

Main challenges:

- Space charge effect
- Strong undulator (vertical) focusing + horizontal gradient
- "Full physics" might have to be considered
- Waveguide effect
- Wakefields: geometric and conductive wall effects

Reference particle trajectories in the undulator with horizontal gradient

PITZ upgrade for the proof-of-principle experiment on THz source

THz SASE FEL at PITZ, $\lambda_{rad} = 100 \mu m$

Space charge dominated electron beam transport over ~27m, 2nC, 17MeV/c

- Narrow vacuum chamber
- Strong vertical focusing
- Lattice constrains

٠

X.-K. Li et al., "Matching of a space-charge dominated beam into the undulator of the THz SASE FEL at PITZ," in 12th Int. Particle Acc. Conf., IPAC2021, Campinas, 2021.

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

THz SASE FEL at PITZ: Gain Curves

High gain (~10⁶) THz SASE FEL characterization

Gain curves for 1nC, 2nC and 3nC measured at HIGH3.Scr3:

- in-vacuum mirror without hole
- band-pass filter (BPF3.0-24) applied

Probability distribution of the radiation pulse energy from SASE FEL operating in the high gain linear regime follows gamma distribution**:

$$\rho(W) \propto \frac{M^M}{\Gamma(M)} \left(\frac{W}{\langle W \rangle}\right)^{M-1} \frac{1}{\langle W \rangle} \exp\left[-M \frac{W}{\langle W \rangle}\right],$$

**E.L. Saldin, E.A. Schneidmiller, and M.V. Yurkov, "Statistical properties of radiation from VUV and X-ray free electron laser", Opt. Commun., vol. 148, p. 383, March 1998. doi:10.1016/S0030-4018(97)00670-6

THz SASE FEL at PITZ: Further Optimization

High gain THz SASE FEL characterization

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

Reference case: 2nC

Cross-check with linear theory of FEL amplifier with diffraction effects

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

 σ_E^2

Reference case: 2nC

Cross-check with linear theory of FEL amplifier with diffraction effects

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

First Seeding Experiments

SASE vs. seeded THz FEL with modulated photocathode pulse (preliminary results)

- Gain Curves at HIGH3.Scr3 (THz mirror w/o hole) with BPF
- THz FEL Seeding experiments (2nC e-beam with modulated photocathode laser pulse):
 <W>→ 33µJ vs 21µJ from SASE

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

Electron beam in dispersive section and pyrodetectors signals

PITZ Bunch Compressor

Commissioning

The bunch compressor is designed to optimize e-beam for:

- SASE FEL
 - > 5ps FWHM, I_{peak} ~ 200 400 A
- Coherent radiation from ultra-short bunch (SUR, CTR, CDR)
 - < 1ps FWHM, bunch charge < 400pC
- Support tuning of FEL seeding (using PC laser pulse modulation, DLW, slit technique, etc.)

PITZ Bunch Compressor

250pC bunch compression (s2e)

Proof-of-principle Experiment on THz Source at PITZ

—Minimum requirements [Zalden et al] THz SASE FEL (PITZ+Apple-II) 10000 -O-THz SASE FEL at PITZ (proof-of-principle) 3THz;2.5mJ 15THz: ЪЧ (ideal sim) 1.5mJ 1000 energy, (ideal sim) 3THz; 5THz: 500µJ 300µJ (sim) pulse (sim) 100 THZ **4**3THz: 30µJ (exp) 10 10 0,1 frequency, THz

Scientific requirements:

[1] P. Zalden, et al., "Terahertz Science at European XFEL", XFEL.EU TN-2018-001-01.0

Where we are now and the way to go

"..3 to 20 THz is the most difficult to cover by existing sources; at the same time, many vibrational resonances and relaxations in condensed matter occur at these frequencies."

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

parameter	Min. requirements [1]	PITZ (experiment)	
Bandwidth	10.05	~0.02	
f [THz]	0.1 <mark>320</mark> 30	<mark>35</mark>	
Pulse energy	<u>3mJ@0.1THz;</u> <u>30µJ@1THz;</u> 10µJ@10THz	3065µJ@3THz	Gaussian photocathode
CEP	yes	no*	bunch charge
Rep.Rate (burst)	0.1MHz4.5MHz	1MHz*	
Synchronization	<0.1/f	challenge	
Polarization	optional	yes	

Conclusions and Outlook

THz SASE FEL prototype based on high brightness photo injector

- PITZ e-source = EXFEL and FLASH e-sources → same pulse train structure!
- Developments on high (peak- and average-) power tunable accelerator-based THz source for *pump-probe* experiments at the European XFEL:
 - Proof-of-principle experiment ongoing @PITZ (supported by EXFEL):
 - \rightarrow LCLS-I undulator (challenging parameters for 1-3nC and 17MeV/c)
 - → 1st THz SASE FEL Lasing at $\lambda_{rad} = 100 \mu m$ → 09.08.2022
 - → High gain (~10⁶) measured !
 - → Strong dependence on beam *current* and transport /matching
 - → Saturation at >20µJ (BPF) with 2nC
 - →Recently >65µJ (w/o BPF) with ~2.4nC
 - → First seeding experiments >30µJ (BPF) with 2nC modulated beams

Outlook:

- Further THz SASE FEL studies (laser flattop, BC, tunability, etc.)
- Further studies on seeding options for stabilization
- Explore PITZ BC usage for THz generation (+SUR, seeding tuning)
- More THz diagnostics (spectrum, EOS, stability, etc.)

Thank you!

Contact

Deutsches Elektronen-Mikhail KrasilnikovSynchrotron DESYPITZE-mail : mikhail.krasilnikov@desy.dewww.desy.dePhone : +49-(0)33762-77213

Backup slides

PITZ upgrade for the proof-of-principle experiment on THz source

Design and technical Implementation

THZ SASE FEL at PITZ

Electron beam matching (2nC) for lasing

150

DESY. | THz source at PITZ | M. Krasilnikov | LEDS2023, ENEA Frascati, 03.10.2023

Astra+Genesis1.3 simulation Nominal case

- Input beam for Astra: 4 nC, flattop 22 ps laser pulse
- Beam momentum: 17 MeV/c → 100 um, 3 THz

Case	100 um	Unit
Electron momentum	17	MeV/c
THz pulse energy	493.1± 109.8	μJ
Arrival time jitter	1.5	ps
Center wavelength	101.8± 0.7	μm
Spectrum width	2.0±0.4	μm

20

Astra+Genesis1.3 simulation 2 nC as used in experiments

• Input beam for Astra: **2 nC**, MBI laser (6-7 ps Gaussian) \rightarrow only **1** μ J

Astra+Warp simulation

- Input: 2 nC beam from Astra simulation, 1 M macro particles (10⁴ less than electrons)
- Smoothing of charge/current for EM solver switched ON to suppress noise

z = 1.34 m

0

x (mm)

z = 2.69 m

0

x (mm)

2

4

4

2

-4

-4

-2

-2

y (mm)

y (mm)

z = 2.09 m

TE01 + TE21?

Page 5

DEST.

LCLS-I undulator

Vacuum chamber and coils

