Considerations for low energy slice energy spread measurements

Chris Richard

HELMHOLTZ

Slice energy spread (SES) measurements

SES measurements are crucial for understanding FEL performance

- FEL brightness is dependent on the slice energy spread
- SES is typically ~keV, making it challenging to measure
 - Need to properly account for systematic errors
- High energy machines \rightarrow dispersion scan
 - Can ensure the rest of the parameters are constant

	SDUV	FERMI	SwissFEL	Eu-XFEL	Unit
Q	100	600	200	250	pC
$\tilde{E_k}$	136	1320	100	130	ŴеV
Ι	12	800	20	20	А
σ_E	1.2	40	15	5.9	keV
I/σ_E	10	20	1.3	3.4	A/keV
Method	Undulato	r radiation	Dispe	ersion	
Reference	[33]	[40]	[31]	[32]	

Photo Injector Test Facility at DESY Zeuthen (PITZ)

20 MeV photoinjector with flexible beam parameters and diagnostics Primary goals of PITZ Overview of av

- Commission and characterize electron sources for FLASH and European XFEL
- General accelerator R&D

Typical beam parameters

Charge	10 pC – 3 nC (250 pc nominal)		
Energy	17-25 MeV (20 MeV nominal)		
Transverse emittance	< ~1 mm mrad		

Overview of available diagnostics

- Charge ICT and Faraday cups
- Momentum low and high energy dispersive arms
- Bunch size scintillating screens
- Bunch length TDS
- Longitudinal phase space TDS, tomography

Transverse phase space – Slit-screen scans

DESY. | Considerations for low energy slice energy spread measurements | C. Richard

SES measurements at PITZ

Can use existing diagnostics for SES measurements

Low energy SES measurements

- Screen and transverse size contributions are proportional to energy \rightarrow better resolution at low energies
- Dispersion scans are challenging
 - Cannot keep constant beam size due to space charge
- Requires measuring each term separately

$$\sigma_{\text{meas}}^{2} = \left(\sigma_{\text{E}}\frac{D}{E}\right)^{2} + \sigma_{\text{PSF}}^{2} + \sigma_{\perp}^{2} + \left(\sigma_{\text{E,TDS}}\frac{D}{E}\right)^{2}$$
$$\sigma_{\text{E},\perp} = \sigma_{\perp}\frac{E}{D} \qquad \sigma_{\text{E,PSF}} = \sigma_{\text{PSF}}\frac{E}{D}$$

	Energy (MeV)	Dispersion (m)	E/D (keV/mm)
PITZ	20	0.9	22
European XFEL	130	1.2	108

150

SES measurement resolution – Screen contribution

Measured distribution is convolution of true distribution with the camera resolution

Measuring the camera resolution

- Insert horizontal slit at Slit2 to reduce vertical emittance .
- Scan Quads3 to vary R12y through the dispersive arm •
 - R12 measured by scanning the beam position
- Fit beam size vs R12y to get resolution •
 - Measured: 69 μ m = 1.5 keV

Slit 1

1.3 GHz

Gun + booster

Can improve resolution by reducing camera aperture at • the cost of SNR

$$\sigma_{\rm meas}^2 = \sigma_{\rm true}^2 + \sigma_{\rm scr}^2$$

$$\sigma_y^2 \approx \sigma_{\rm scr}^2 + (R_{12y} \cdot \sigma_{y',0})^2$$

SES measurement resolution – Emittance contribution

Disp3.sci1

Horizontal dispersive arm

Measured beam size in the dispersive arm is combination of

Measuring the emittance contribution

- Insert vertical slit at Slit 2 to reduce horizontal emittance
- Turn off dipole
- Scan Quads3 to vary R12x through the straight section
 - Fit to get rms angle at the slit
- Turn on dipole. Measure R12x through dispersive arm
- Measured: 30 μm = 0.65 keV Horizontal 50 μm slit inserted
 Vertical 50 μm slit inserted
 Slit 1
 Slit 1
 Slit 2
 Gun + booster
 Used to the state of the

$$\sigma_y^2 \approx \sigma_{\rm scr}^2 + (R_{12y} \cdot \sigma_{y',0})^2$$

DESY. | Considerations for low energy slice energy spread measurements | C. Richard

SES measurement resolution – TDS contribution

TDS fields introduce additional energy spread

Measuring the non-TDS contribution

- Slit1 horizontal slit inserted \rightarrow reduce ß at TDS .
- Slit2 vertical slit inserted \rightarrow reduce ε in dipersive • arm
- Scan TDS voltage and measure SES ٠
- Fit SES vs TDS voltage to remove TDS contribution ٠

$$\sigma_{\rm meas}^2 = \left(\sigma_{\rm E} \frac{D}{E}\right)^2 + \sigma_{\rm scr}^2 + \sigma_{\perp}^2 + \left(\sigma_{\rm E,TDS} \frac{D}{E}\right)^2$$

 $\sigma_{\rm E,TDS} \propto V_{\rm TDS} \sigma_{\perp,\rm TDS}$

$$\sigma^2_{
m meas}=\sigma^2_0+aV^2_{
m TDS}$$
 (Eq. 8)

ge 7

SES measurement resolution – TDS contribution

TDS fields introduce additional energy spread

Measuring the non-TDS contribution

- Slit1 horizontal slit inserted \rightarrow reduce ß at TDS
- Slit2 vertical slit inserted \rightarrow reduce ϵ in dipersive arm

$$\sigma_{\rm meas}^2 = \left(\sigma_{\rm E} \frac{D}{E}\right)^2 + \sigma_{\rm scr}^2 + \sigma_{\perp}^2 + \left(\sigma_{\rm E,TDS} \frac{D}{E}\right)^2$$

 $\sigma_{\rm E,TDS} \propto V_{\rm TDS} \sigma_{\perp,\rm TDS}$

$$\sigma_{\rm meas}^2 = \sigma_0^2 + a V_{\rm TDS}^2$$

Space charge effects

Space charge plays a significant role in SES increase along the beamline

- Space charge plays key role in development of SES
 - Origin of measured SES goes back to the laser size on the cathode
- Simulations show SES increase during transport in measurement section
 - ~30% increase in SES from Slit1 to the measurement screen for 250 pC

Slit 2

Vertical 50 µm slit inserted

Quads 3

Dipole

Disp3.sci1

Horizontal dispersive arm

• Insert slit1 to reduce effect, also improve TDS resolution

Beamline location (m)

DESY. | Considerations for low energy slice energy spread measurements | C. Richard

2997 MHz

Quads 1 TDS on Quads 2

Horizontal 50 µm slit inserted

Slit 1

1.3 GHz

Gun + booster

Transverse distribution dependence

Insertion of slits changes the measured SES

- The energy distribution can be dependent on the transverse distribution
 - \rightarrow Inserting a slit changes the measured energy spread
- Can see ~40% change in SES in simulations when a 50 μm slit is inserted

Beam stability

Even small jitter can causes problems

- Cannot average multiple images due to shot to shot beam jitter/drift
- Time jitter: ~50 px shift over TDS scan
 - Need care for where the central slice is defined
- Energy jitter: ~1-2 px rms = 1.4-2.8 keV rms
 - Energy jitter can be on the same order as the expected SES
 - Challenging to resolve transverse dependence due to this jitter

Non-TDS contribution	Screen resolution	Emittance resolution	Real slice energy spread	Units
107 ± 2 2.32 ± 0.05	$\begin{array}{c} 69\pm1\\ 1.50\pm0.02 \end{array}$	$\begin{array}{c} 30\pm1\\ 0.65\pm0.02 \end{array}$	$\begin{array}{c} 76\pm2\\ 1.65\pm0.06\end{array}$	μm keV

E=20 MeV, D = 0.9m Pixel size: 62.8 μ m = 1.36 keV

Signal to noise ratio

Low SNR makes SES calculation challenging

- 250 pC \rightarrow 10 pC at screen due to slits
- Limited bunches per train in TDS due to klystron limitation
 - Single shot brightness is limited
- Can't average many pulses due to jitter increasing the measured size
 - SES results are sensitive to small changes because it is close to the resolution limit

Possible causes of discrepancy with simulations

Simulations cannot properly replicate the emission process

- Measured SES: 1.65 keV
- Simulated SES: 0.75 keV

Possible causes of discrepancy

- Insufficient model of emission in ASTRA
- Intrabeam scattering
- Sensitivity to gun and booster needs investigation
- Resolution limits of measurement

Non-TDS contribution	Screen resolution	Emittance resolution	Real slice energy spread	Units
$\begin{array}{c} 107 \pm 2 \\ 2.32 \pm 0.05 \end{array}$	$\begin{array}{c} 69\pm1\\ 1.50\pm0.02 \end{array}$	$\begin{array}{c} 30\pm1\\ 0.65\pm0.02 \end{array}$	$\begin{array}{c} 76\pm2\\ 1.65\pm0.06\end{array}$	μm keV

Summary and outlook

Plans for further investigations and improvements to the setup

- We can measure SES at PITZ
 - Low energy machine \rightarrow can get better resolution
- Care is needed to minimize errors
 - Insert slits to reduce effects of space charge, emittance, and TDS
 - But at the cost of SNR and not measuring the full beam
- Work on improving measurements
 - New laser → higher rep rate → higher SNR, better stability
 - Remote camera aperture control \rightarrow optimize resolution
 - New tomography method being developed
- Plans for further investigations
 - Variations with gun and booster parameters
 - Variations with bunch charge

SY.	I Considerations for	low energy slice energy	v spread measurements (C. Richard

Non-TDS contribution	Screen resolution	Emittance resolution	Real slice energy spread	Units
$\begin{array}{c} 107\pm2\\ 2.32\pm0.05 \end{array}$	$\begin{array}{c} 69\pm1\\ 1.50\pm0.02 \end{array}$	$\begin{array}{c} 30\pm1\\ 0.65\pm0.02 \end{array}$	$\begin{array}{c} 76\pm2\\ 1.65\pm0.06\end{array}$	μm keV

Thank you

Determining the central slice

Need definition of central slice that accounts for position drift Methodology

- Initial guess: the center of the unstreaked beam
 - i.e. the beam center if the TDS is turned off
- Scan the slice location to find the minimum SES

240

230

250

Energy (px)

260

200

350

220

280

270

Estimating IBS from plasma parameters

Plans for further investigations and improvements to the setup

- Using crude model of static, neutralized plasma to calculate the beam density, temperature, plasma parameter, and IBS energy spread
 - Use rms parameters from beamline simulations to calculate values
 - Estimate ~0.2 keV SES increase at Slit1 from IBS
- See sharp increase in plasma parameter near the cathode
 - Possible collisions at cathode increases SES?

DESY. | Considerations for low energy slice energy spread measurements | C. Richard

Contact

Deutsches Elektronen-
Synchrotron DESYChris Richard
DESY PITZ
christopher.richard@desy.de

www.desy.de