Slice Energy Spread Measurements in the EuXFEL Injector

Stuart Walker, Sergey Tomin, Igor Zagorodnov, Nina Golubeva, Matthias Scholz, Winfried Decking, Bolko Beutner, Erion Gjonaj

LEDS Workshop 2023, Frascati, Rome, 4/10/2023

HELMHOLTZ

Overview

Subheading, optional

- 1 Motivation
- 2 Context
- **3** Overview of the EuXFEL
- 4 Method
- **5** Measurements with Results
- 6 Conclusion

Motivation

- Uncorrelated (slice) energy spread is an important property in FELs, where high brightness is required.
- However, usually energy spread from injector is too low and must be increased using the laser heater (LH) to increase SASE performance due to the microbunching instability.
 - Ideally increased to 8 keV based on simulations from Martin Dohlus, but actual optimal value never measured.
- Regardless, understanding uncorrelated energy spread is necessary to improve machine reproducibility and understanding.
- Dynamics not understood, unable to recreate measured slice energy spread values with ASTRA simulation.

Context

- Fermi, 2020: Intrabeam scattering measured, but result highly dependent on initial energy spread, which was treated as a free parameter.
- SwissFEL, 2020: energy spread measurement in the injector using an energy scan—<u>15 keV</u> @ 200pC & >100MeV.
- EuXFEL, 2021: Similar approaching involving a dispersion scan—<u>6 keV</u> @ 250pC & 130MeV.
- PITZ, 2022: <u>2 keV</u> @ 250pC & 20MeV.
- SwissFEL, 2022: Contribution of the microbunching instability and intra-beam scattering evidenced by varying the optics -> <u>reduced</u> by adjusting optics and disabling LH chicane.
- This talk: recent measurements and new results since November 2022 in the EuXFEL injector.

The EuXFEL

Overview

- 3.1 km machine.
- Two hard x-ray undulator lines, SA1 and SA2.
- One soft x-ray line, SA3.
- Four chicanes, laser heater chicane in injector and three for compression.
- Diagnostic stations in injector and after BC2 (at max compression).

- One transverse deflecting structure (TDS) in the injector, and one after BC2.
- Beam can be matched in diagnostic sections and just after BC1.
- Hard x-ray self-seeding in SA2, wish recent pushes to more special modes.
- Crucial to know longitudinal beam dynamics to deliver the best performance.

The EuXFEL

Injector

The Usual Approach

Energy Spread Measurement

Only provides an upper limit on uncorrelated spread σ_{E} .

Neglected contributions to size:

- Intrinsic betatronic beam size
- TDS-induced energy spread
- Imaging resolution

In the injector these contributions can be larger than the slice energy spread's contribution!

Need to separate these effects...

Separating the contributions to the slice size

Energy Spread Measurement

Assuming no correlation between TDS-induced energy spread and "true" energy spread, the final slice energy spread seen at the screen:

$$\sigma_{E_{\text{final}}}^{2} = \sigma_{E}^{2} + (ekV)^{2}\sigma_{I}^{2}$$

$$\underset{\text{Beamsize in the TDS}}{\text{Imaging resolution}} \xrightarrow{\text{Betatron energy spread contribution}} \xrightarrow{\text{TDS contribution}}$$

$$\sigma_{B}^{2} = \frac{\beta_{x}\varepsilon_{n}}{\gamma_{0}} \quad \sigma_{I}^{2} = \frac{\varepsilon_{n}}{\gamma_{0}} (\beta_{y}^{0} + 0.25L^{2}\gamma_{y}^{0} - L\alpha_{y}^{0})$$

 $\sigma_{M}^{2} = \sigma_{R}^{2} + \sigma_{B}^{2} + \frac{D^{2}}{E^{2}}\sigma_{E}^{2} + \frac{D^{2}}{E^{2}}(ekV)^{2}\sigma_{I}^{2}$

High Resolution Technique

Energy Spread Measurement

Dispersion Scan

TDS Scan

Derived Values

Energy Spread Measurement

For the two scans:

For the two scans:

$$\sigma_{E}^{2} = \frac{E_{0}}{D_{0}}\sqrt{A_{V} - A_{D}}$$

$$\sigma_{I}^{2} = \sigma_{R}^{2} + \sigma_{B}^{2} + \frac{D^{2}}{E^{2}}\sigma_{E}^{2} + \frac{D^{2}}{E^{2}}(ekV)^{2}\sigma_{I}^{2}$$

$$\sigma_{I} = \frac{E_{0}}{D_{0}ek}\sqrt{B_{V}}$$

$$\sigma_{I} = \frac{E_{0}}{D_{0}ek}\sqrt{B_{V}}$$

$$\sigma_{B} = \sqrt{B_{\beta}\beta_{x}^{0}}$$

$$\sigma_{B} = \sqrt{B_{\beta}\beta_{x}^{0}}$$

$$B_{\beta} = \sigma_{I}^{2}(\beta_{y}^{0} + 0.25L^{2}\gamma_{y}^{0} - L\alpha_{y}^{0})^{-1}$$

$$A_{V} = \sigma_{R}^{2} + \sigma_{E}^{2} + \frac{D^{2}}{E^{2}}\sigma_{E}^{2}$$

$$A_{D} = \sigma_{R}^{2} + \sigma_{E}^{2}$$

$$\sigma_{R} = \sqrt{A_{D} - \sigma_{B}^{2}}$$

$$\sigma_{R} = \sqrt{A_{D} - \sigma_{B}^{2}}$$

Injector Setup

• Calibrate the gun phase.

٠

- Turn off AH1 for minimum chirp contribution to energy spread.
- Go on crest in A1, adjust the voltage so we are at 130 MeV at the screen.
- Apply special optics to maximise the ratio of the dispersion to the betatron contributions to the spot size.
- Match the central slice.
- Measure the dispersion.

Special optics for measurement from TDS to the screen

Procedure

TDS No. = 13, η_x = 1.181 m, image 1, before/after image processing

Take 5 background images at the start of the measurement, and then 30 images: 1. At each TDS V in the voltage scan. 2. At each D_x at the screen in dispersion

- scan.
- 3. At each β_x at the screen in the beta scan.

Then:

- Subtract background.
- Mask to remove isolated blobs. 2
- Pick the largest connected non-zero 3. pixel blob to be "the beam".
- 4. Fit a Gaussian to 10 slices centred on highest energy slice & average.

28th November 2022 Measurements

• Aim:

- Repeat measurement from 2021 publication (σ_E = 5.9 keV).
- Match beamline configuration from that time as much as possible.
- Particular attention to:
 - Gun gradient: 54.7 MV/m.
 - Solenoid: 326 A.
- Cathode changed in 2022!

Outcome:

- Three energy spread measurements over 8 hours:
 - 1. Gun gradient 54.7 MV/m, solenoid 326 A, gun phase -43° (most similar to 2021 result).
 - 2. Gun gradient to 56.5 MV/m, solenoid to 336 A.
 - 3. Solenoid to 335 A, gun phase to -41°.

Results

Scenario	σ_E / keV	Solenoid / A	Gun Gradient / MV m ⁻¹	Gun Phase / °
Feb. 2021 Published Result	5.842	338	56.7	-42.9
Nov. 2022 Measurement 1	4.313	326.6	54.7	-43.1
Nov. 2022 Measurement 2	3.635	336	56.5	-43.6
Nov. 2022 Measurement 3	3.385	335	56.5	-41.6

Variable	Feb. 2021	Nov. 2022	Unit
A_V	4.530×10^{-9}	3.043×10^{-9}	m^2
B_V	1.515×10^{-21}	1.326×10^{-21}	$\mathrm{m}^2\mathrm{V}^{-2}$
A_D	1.702×10^{-9}	1.540×10^{-9}	m^2
B_D	2.433×10^{-9}	1.416×10^{-9}	-
σ_E	5.8	4.3	keV
σ_I	68.0	64	μm
σ_B	29	28	μm
σ_R	28	27	μm
ε_n	0.38	0.34	$mm \cdot mrad$
V_0	0.61	-0.63	MV
D_0	1.183	1.169	m

$$\sigma_M^2 = \sigma_R^2 + \sigma_B^2 + \frac{D^2}{E^2}\sigma_E^2 + \frac{D^2}{E^2}(ekV)^2\sigma_I^2$$

Nov. 2022 Measurements:

- 1. Gun gradient 54.7 MV/m, solenoid 326 A, gun phase -43° (most similar to 2021 result)
- 2. Gun gradient to 56.5 MV/m, solenoid to 336 A,
- 3. Solenoid to 335 A, gun phase to -41°.

Imperfect recreation of 2021 conditions, was as close as we could get.

Comments

- The measured energy spread in the injector decreased since Feb. 2021 from 5.9 keV to 4.2 keV.
 - Through 2023 has since remained stabled at around <u>4 keV</u> with repeated measurements.
- Still not the value predicted by theory (Erion's simulations predict \approx 3 keV with IBS).
- In the period between these two measurements:
 - The cathode has changed.
 - The bunch length was increased from around 4 ps to around 5 ps.
- Suggests a long term drift in the energy spread.
- These three datapoints took eight hours to acquire.

New Tooling Measurement

- Taking ~400 images across ~15 machine setpoints without special tooling would take about an hour. Then, offline analysis takes another 10 minutes.
- To this end we have developed a GUI to do the parameter scanning.
 - Live image processing panel.
 - Live slice width scan plots (e.g. TDS voltage against central slice width).
 - Immediate results at the end of the scan.
- <u>Bottom line: results in a few</u> <u>minutes.</u>

New Scans

- We did two scans over a single four hour shift on 31st August 2023.
 - Bunch charge scan: 50 pC, 150 pC, 250 pC and 350 pC.
 - Laser heater chicane R_{56} scan: -1 mm, -2.5 mm, -4.336 mm (nominal), -5.5 mm and -7 mm.
- We rematched the projected emittance every single time,
 - then **measured** the central slice emittances (showing good matching already).
- We additionally scanned the beta function at the screen (not shown here).
- The fast measurement software described previously allows us to do these sorts of scans now.

Bunch Charge Scan

Slice Energy Spreads

- We scanned from 50 pC to 350 pC in steps of 100 pC.
- Unable to resolve the TDS contribution to the energy spread at 50 pC, so assumed to be zero.
 - No obvious reason to consider energy spread from TDS to be zero, related to the camera sensitivity?

Bunch Charge Scan

Bunch Lengths

Bunch Charge Scan

Transverse Optics

• $D_x = 1.2$ m at the screen.

• Only 50 pC backtracked to cathode due to reduced space charge effects at this charge.

Laser Heater Chicane R₅₆ Scan

Slice Energy Spreads

- We scanned the R_{56} of the laser heater chicane from -7 mm to -1 mm (the minimum) @ Q = 250 pC.
- We rematched the beam each time, and then measured the central slice (good matching).

Design setting (-4.336 mm) not scanned in order with the other setpoints.

Strong dependence on LH R₅₆ is apparent, from
 4.5 keV at maximum to 2.4 keV at minimum.

DESY. | Slice Energy Spread Measurements in the EuXFEL Injector | Stuart Walker, LEDS Workshop, Frascati, Rome, 4/10/2023

Laser Heater Chicane R₅₆ Scan

Transverse Optics

• $D_x = 1.2$ m at the screen.

• 250 pC, so backtracked only to first cavity.

Conclusion

- The slice energy spread shows wide tunability based on the charge and laser heater chicane R_{56} :
 - (2.4–4.6) keV from -1 mm to -7 mm R_{56} @ 250 pC.
 - (3.0–4.5) keV from 50 pC to 350 pC @ nominal *R*₅₆.
- This, in combination with the longer term decrease from 6 keV to 4 keV in the last two years for unknown reasons, makes it clear that there is still a lot to be understood about the longitudinal phase space dynamics in the injector.
- Important to understand to boost reproducibility.
- The charge scan points at possible IBS contributions to the slice energy spread.
- The R₅₆ dependence needs more understanding and explanation. MBI?
- We now have a fast and easy to use data taking and online analysis tool which gives immediate results. Room for further studies of other parameters, e.g. bunch length.

Outlook

- Upcoming experiment in October for additional chicane studies (opening the undulator and repeating).
- We want to go to 10 pC to neglect collective effects and try to directly observe the thermal slice energy spread from the cathode.
- Aiming to take part in the upcoming new laser commissioning—-bunch length scans (not possible with current laser).
- We would like to provide an absolute calibration of the laser heater.
- IBS simulation work ongoing with Erion Gjonaj to ground these results more in theory.
- Further work on the GUI and tooling to improve usability and speed.
- New measurements and studies are possible with new software—open to ideas, suggestions and collaboration!
- We want to ultimately transport to the in BC2 and measure there at 130 MeV—tricky for a number of reasons.

Thank you Vielen Dank

Contact

Stuart Walker
MXL
stuart.walker@desy.de
4756

Backup

Do we get a kick from A1 when measuring the dispersion?

Possible Dispersion Leakage from the LH Chicane

- We did not remeasure the dispersion at each setpoint of the laser heater R₅₆ scan.
 - Possible: we have some leaked dispersion from the chicane at the screen.
- First two dipoles have same power supplies, second two are each independent.
- Consider: Identical 15% error in first two dipoles and independent 15% errors in second pair, perhaps some sort of "worst case".
- Simulated in OCELOT.
- Dispersion at the screen is tolerant to even large changes in the LH dipoles.
- Nevertheless should measure the dispersion in future experiments.
- Translates max ±10% error in energy spread.

Emittance Measurements

- Matthias matching/measurement tool is vital to our measurement.
- We match projected and then measure slice—and normally this gives reasonable matching, but we extract much smaller emittances from our scans.
- We see measured central slice emittances that are larger than the corresponding projected emittances even with apparently "good" matching.
- Is there any way we can reduce the error bars here?

Constant Contributions to Measured Widths

- In principle both are known:
 - Screen resolution (σ_R) from dedicated optics simulations (Artem)

 $A_D = \sigma_R^2 + \sigma_R^2$

- Betatron contribution (σ_B) from slice emittance measurement and linear optics (Matthias)
- $\sigma_R = 28 \mu m$ (from Artem and previous scans); $\beta_x = 0.6 m$ and $\varepsilon_x = 0.43 mm \cdot mrad$ (Matthias matching tool)
- Constant terms remain constant across the scan, but ~7% larger than expected (from Matthias+Artem).

DESY. | Slice Energy Spread Measurements in the EuXFEL Injector | Stuart Walker, LEDS Workshop, Frascati, Rome, 4/10/2023

Deriving the emittance assuming the screen resolution

- Fitting A_D and using a pre-calculated value of σ_R , we can extract a value for the slice emittance.
- We independently measure, using Matthias' matching tool, (0.43±0.05) mm•mrad for the slice emittance.

- Not entirely in disagreement with our derived value.
- Can we reduce the uncertainties in the emittance measurement?

Beam Matching

- Central slice always matched for measurements
 - Very important, otherwise can get an artificially deflated energy spread result!
 - Use screen just in front of TDS
- We remeasured the dispersion at every single point in the dispersion scan and once per TDS scan.

Beta Scan

Consistency of results

Stuart Walker, MXL

$$\sigma_{M}^{2} = \sigma_{R}^{2} + \sigma_{B}^{2} + \frac{D^{2}}{E^{2}}\sigma_{E}^{2} + \frac{D^{2}}{E^{2}}(ekV)^{2}\sigma_{I}^{2}$$

$$\sigma_{M}^{2} = A_{V} + B_{V}V^{2}$$

$$\sigma_{M}^{2} = A_{D} + B_{D}D^{2}$$

$$\sigma_{M}^{2} = A_{\beta} + B_{\beta}\beta_{x} \qquad \sigma_{E} = \frac{E_{0}}{D_{0}}\sqrt{D_{0}^{2}B_{D} - V_{0}^{2}B_{V}}$$

$$\sigma_{I} = \frac{E_{0}}{D_{0}ek}\sqrt{B_{V}} \qquad \sigma_{I} = \frac{E_{0}}{D_{0}ekV_{0}}\sqrt{D_{0}^{2}B_{D} + A_{D} - A_{V}}$$

$$\sigma_{B} = \sqrt{B_{\beta}\beta_{x}^{0}} \qquad \sigma_{B} = \sqrt{A_{D} + B_{D}D_{0}^{2} - A_{\beta}}$$

$$B_{\beta} = \sigma_{I}^{2}(\beta_{y}^{0} + 0.25L^{2}\gamma_{y}^{0} - L\alpha_{y}^{0})^{-1} \qquad B_{\beta} = \varepsilon_{n}\gamma_{0}^{-1}$$

$$\sigma_{R} = \sqrt{A_{D} - \sigma_{B}^{2}} \qquad \sigma_{R} = \sqrt{A_{\beta} - B_{D}D_{0}^{2}}$$

$$FLUPPOBEN XFEL$$

Stuart Walker, MXL

$\sigma_M^2 = \sigma_R^2 + \sigma_B^2 + \frac{D^2}{E^2}\sigma_E^2 + \frac{D^2}{E^2}(ekV)^2\sigma_I^2$

Variable	Value	Alt. Value	Units
V_0	-0.63	-	MV
D_0	1.169	-	\mathbf{m}
A_V	$(3.043\pm0.002) imes10^{-9}$	-	m^2
B_V	$(1.326\pm0.003) imes10^{-21}$	-	$ m m^2 V^{-2}$
A_D	$(1.540\pm0.002) imes10^{-9}$	-	m^2
B_D	$(1.416 \pm 0.002) \times 10^{-9}$	-	
A_eta	-	$(2.985\pm0.002) imes10^{-9}$	m^2
B_{eta}	-	$(9.442 \pm 0.007) imes 10^{-10}$	m
σ_E	4.313 ± 0.004	4.187 ± 0.005	keV
σ_I	$(6.444 \pm 0.008) imes 10^{-5}$	$(5.88\pm0.03) imes10^{-5}$	m
σ_B	$(2.834 \pm 0.004) imes 10^{-5}$	$(2.215 \pm 0.009) \times 10^{-5}$	m
σ_R	$(2.714 \pm 0.005) imes 10^{-5}$	$(3.239 \pm 0.005) imes 10^{-5}$	m
$arepsilon_x$	0.3408 ± 0.0009	0.2403 ± 0.0002	$\mathrm{mm} \cdot \mathrm{mrad}$

2022 data with beta scan (Attempting to recreate 2021)

Consistency of Results 2

New Tooling TDS Calibration

- Additionally the TDS needs to be calibrated for each measurement campaign to get the voltage → also takes up to an hour.
- Also developed an injector TDS calibration GUI
 - Automatically scan TDS "amplitudes" and phases to build mapping of amplitudes [%] to voltages [MV] → Gives all downstream longitudinal calibrations!
 - Also useful for non-invasive emittance and bunch length measurements.
- <u>Bottom line</u>: calibrate the injector TDS in a few minutes with no human intervention.

Amplitude to voltage mapping (the calibration final result).

base) xfelbkr3:~ xfeloper\$ nitializing ocelot...

nitializing ocelot... 834 = -5.464111372592683

QThread: Destroyed wh

10.0 339641.03675728134 R34 = -5.464111372592683 15.0 471400.99705934257 R34 = -5.464111372592683 0.0 725694.2912201958

R34 = -5.464111372592683

Abort trap: 6 (base) xfelbkr3:~ xfeloper\$ initializing ocelot...

Abort trap: 6 (base) xfelbkr3:~ xfeloper\$ initializing ocelot... R34 = -5.464111372592683

Amplitude / %

gradients at each amplitude

Center of Mass against TDS

mplitude = 10.0

base) xfelbkr3:~ xfeloper\$ /Users/xfeloper/.local/bin/td

10.0 363875.8761184499 QThread: Destroyed while thread is still runnin

DESY. | Slice Energy Spread Measurements in the EuXFEL Injector | Stuart Walker, LEDS Workshop, Frascati, Rome, 4/10/2023