

Self-consistent intrabeam scattering methods

Andreas Adelmann

in collaboration with Sriramkrishnan Muralikrishnan (Jülich), Tobia Claglüna, Severin Klapproth, Gardar Skarphedinsson, Benjamin Ulmer, Tim Wyssling (ETH students)

October 4, 2023

Self-consistent intrabeam scattering methods

October 4, 2023 Page 1 / 25

Introduction

- F denotes a force, f is the phase space distribution function
- The direct simulation approach has two terms representing the far field $F^{\rm far}$ and the near field $F^{\rm near}$ forces
- In the kinetic description, $\left(\frac{\partial f}{\partial t}\right)_{\text{diff}}$ refers to the diffusion term, which contains the mean field, while $\left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$ represents the collision operator

Ultracold Sources

Data from [XHM⁺, KAS⁺20]

- Applications in electron diffraction (imaging) and free electron lasers profit greatly from high brightness beams.
- A promising candidate for such beams are photoinjectors with ultracold photocathodes.

Observable	Magneto	Ultra Cold	Regular
	Optical	Photo In-	Photo injec-
	Traps	jector	tor
e ⁻ Temperature [K]	< 10	50 <	1e3 - 1e4
Beam Charge [pC]	1000	-	100-3000
Emittance [mm.mrad]	0.04	$\propto 0.05$	1
Brightness [A/m ² ·sr]	1e16	\propto 1e16	1e12 - 1e13
Bunch Length [ps]	0.1-1	-	< hundreds

The P^3M Algorithm

Implementation following [HE]

- $\mathrm{P}^{3}\mathrm{M}=\textbf{P}\text{article-P}\text{article}+\textbf{P}\text{article-M}\text{esh}$
 - high resolution from PP part
 - good performance from PM part
 - adjustable influence of Coulomb collisions
- Particle-Particle (PM):
 - interpolate charges to mesh (CIC, NGP,...)
 - ${f 0}$ solve for potential ${f \Phi}$ using an FFT solver (fast Possion solver)
 - $\textbf{③ compute forces by } F = -\nabla \Phi$
 - interpolate forces to particles \Rightarrow Electric field

The P^3M Algorithm

Implementation following [HE]

- $\mathrm{P}^{3}\mathrm{M}=\textbf{P}\text{article-P}\text{article}+\textbf{P}\text{article-M}\text{esh}$
 - high resolution from PP part
 - good performance from PM part
 - adjustable influence of Coulomb collisions
- Particle-Particle (PM):
 - interpolate charges to mesh (CIC, NGP,...)
 - ${f 0}$ solve for potential ${f \Phi}$ using an FFT solver (fast Possion solver)
 - $\textbf{③ compute forces by } F = -\nabla \Phi$
 - interpolate forces to particles \Rightarrow Electric field
- Particle-Particle (PP):
 - ${f 0}$ compute linked lists for particles in interaction radius r_e
 - compute short range forces
 - update electric field

The Poisson Equation

The electrostatic potential $\Phi(\mathbf{r})$ of a system of interacting point charges $q_i(\mathbf{r})$ with charge distribution $\rho(\mathbf{r})$ is described by the Poisson Equation.

$$\boldsymbol{\nabla}^2 \Phi(\boldsymbol{r}) = -\rho(\boldsymbol{r})$$

With the appropriate Green's function

$$G(oldsymbol{r},oldsymbol{r}')=rac{1}{|oldsymbol{r}-oldsymbol{r}'|}$$

interpreted as the potential that arises due to a point charge at r', the solution for an arbitrary charge distribution is given by the convolution

$$oldsymbol{\Phi}(oldsymbol{r}) = \int G(oldsymbol{r},oldsymbol{r}')
ho(oldsymbol{r}')d^3oldsymbol{r}'$$

Self-consistent intrabeam scattering methods

Interaction Splitting I

The main concept behind the P3M algorithm is a splitting of the interaction function G(r) into a **short-range** contribution $G_{pp}(r)$ and a **long-range** contribution $G_{pm}(r)$. This splitting can be done using a Gaussian screening charge distribution

$$G(r) = \frac{1}{r} = \underbrace{\frac{1 - erf(\alpha r)}{r}}_{G_{PP}} + \underbrace{\frac{erf(\alpha r)}{r}}_{G_{PM}}$$

Interaction Splitting II

Gaussian shaped (S3) screening charge, $\alpha = 2$

Self-consistent intrabeam scattering methods

October 4, 2023 Page 8 / 25

Disorder Induced Heating (DIH) Process

- in a cold beam (near-zero temperature) with high density, stochastic Coulomb interactions (collisions) encounter
- Γ and known from (cold) plasma theory to be between 0.2 and 2 $[\rm MBW^+13]$
- in order to achieve this ratio, the local disorder is transformed into disorder associated with the particle momenta during the simulation
- the phase space volume increases \Rightarrow the beam is heated
- equilibrium solution \Rightarrow solving the hypernetted-chain equation

DIH Setup for Validation

The experimental setup and simulation parameters from [MQ15].

- spherical, cold beam of radius $R=17.74\,\mu{\rm m}$ and charge $Q=25\,{\rm fC}$ with uniform spatial distribution
- constant focusing applied
- $\bullet\,$ cubical domain with edge length $L=100\,\mu{\rm m}$
- P^3M simulation over 5 plasma periods
- $\mathcal{M}_{PM} = 256^3$; r_c varying from 0 µm to 3.125 µm
- simulation over 1000 time-steps
- the normalized x-emittance for the thermal equilibrium is

 $\varepsilon_{x,n}^{eq}=\text{0.491}\,\text{nm}$

obtained by solving the hypernetted-chain equation

Self-consistent intrabeam scattering methods

P3M Results - DIH

Vlasov-Poisson Equation

Vlasov-Poisson Equation

$$\begin{cases} \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \frac{\partial f}{\partial \boldsymbol{v}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}, \\ \nabla_{\boldsymbol{r}}^{2} \phi(\boldsymbol{r}) = -\frac{\rho(\boldsymbol{r})}{\varepsilon_{0}}. \end{cases}$$
(1)

$$\rightarrow$$
 How do we determine the r.h.s. $\left(\frac{\partial f}{\partial t}\right)_{coll}$?

Self-consistent intrabeam scattering methods

Fokker-Planck Equation I

Story ...

- The collision term $(\partial f/\partial t)_{\text{coll}}$ should capture changes to the density function $f(\boldsymbol{r}, \boldsymbol{v})$ due to interactions between particles \Rightarrow relaxation towards equilibrium.
- Picture: a test particle traveling through a background of equally charged particles ("scatterers"). On its path it gets influenced by the electric force of these nearby particles.
- However, the interactions are limited to a Debye radius λ_D , "shielding" the test particle off from particles farther away.

These collisions exhibit two important properties:

 an individual collision (i.e. its potential energy) is weak compared to the thermal energy of the system [BS03], causing only small angle deflections. It can be shown that the accumulated effect of these far outweigh more rare strong interactions.

Fokker-Planck Equation II

Second, the considered time-scale is usually much larger than the collision time τ_c but still smaller than the dissipation time ν [Nic83]:

$$\tau_c \ll \Delta t \ll \nu, \tag{2}$$

where the dissipation time ν is of the scale after which a small perturbation to the phase space density is observed to be below a fixed threshold [FW03].

- \Rightarrow spatial position not affected, $(\partial f/\partial t)_{coll}$ in velocity space
- \Rightarrow strong similarity to properties known from Brownian motion
- \Rightarrow Fokker-Planck formulation of the collision operator is applicable

Fokker-Planck Equation III

In the Fokker-Planck approach we advance our phase space density f in time by Δt via an integral over a probability function $\psi(\boldsymbol{v}, \Delta \boldsymbol{v})$ that defines how likely it is that a particle with velocity \boldsymbol{v} experiences a change in velocity $\Delta \boldsymbol{v}$. Taylor expansion up to order 2 of this integral results in the FP operator:

$$\left(\frac{\partial f}{\partial t}\right)_{\rm coll} = -\frac{\partial}{\partial v} \cdot \left(f\frac{\langle \Delta v \rangle}{\Delta t}\right) + \frac{1}{2}\frac{\partial^2}{\partial v \partial v} : \left(f\frac{\langle \Delta v \Delta v \rangle}{\Delta t}\right)$$

Self-consistent intrabeam scattering methods

October 4, 2023 Page 15 / 25

The Rosenbluth's approach to FP I

$$\left(\frac{\partial f}{\partial t}\right)_{\rm coll} = -\frac{\partial}{\partial v} \cdot \left(f\frac{\langle \Delta v \rangle}{\Delta t}\right) + \frac{1}{2}\frac{\partial^2}{\partial v \partial v} : \left(f\frac{\langle \Delta v \Delta v \rangle}{\Delta t}\right)$$

Collision Coefficients
$$F_d(v) = \frac{\langle \Delta v \rangle}{\Delta t} = \Gamma \frac{\partial h(v)}{\partial v},$$
 $D(v) = \frac{\langle \Delta v \Delta v \rangle}{\Delta t} = \Gamma \frac{\partial^2 g(v)}{\partial v \partial v}.$ $F_d(v)$: Dynamic friction coefficient $D(v)$: Diffusion coefficient

Poisson Problems [RMJ].

$$\nabla_{\boldsymbol{v}}^2 h(\boldsymbol{v}) = -8\pi f(\boldsymbol{r}, \boldsymbol{v}),$$

$$\nabla_{\boldsymbol{v}}^2 \nabla_{\boldsymbol{v}}^2 g(\boldsymbol{v}) = -8\pi f(\boldsymbol{r}, \boldsymbol{v}).$$

Self-consistent intrabeam scattering methods

The Rosenbluth's approach to FP II

- We've talked about the randomness in how these collisions happen, how do we reflect this in the timestepping procedure?
- Langevin Eq. arises naturaly when a variable experience a slow time variation in velocity due to many small random forces.
- Idea based on Markov processes

Langevin Equation [Tab19]

$$d\boldsymbol{v}(t) = \underbrace{\boldsymbol{a}(\boldsymbol{v},t)}_{\boldsymbol{F}_{d}(\boldsymbol{v})} dt + \underbrace{\boldsymbol{b}(\boldsymbol{v},t)}_{Q(\boldsymbol{v})} d\boldsymbol{W}(t), \tag{3}$$
$$d\boldsymbol{W}(t) = \boldsymbol{\xi}_{t} dt, \quad \boldsymbol{\xi}_{t} \sim \mathcal{N}(0,1). \tag{4}$$

Self-consistent intrabeam scattering methods

Particle-in-Cell + FP I

DIH again

October 4, 2023 Page 19 / 25

Preliminary P3M Results for SwissFEL @13m

in collaboration with Sven Reiche and Thomas Lucas Geoffrey

Can switch on/off collisions in OPAL:

Preliminary P3M Results for SwissFEL @13m

in collaboration with Sven Reiche and Thomas Lucas Geoffrey

Can switch on/off collisions in OPAL:

Self-consistent intrabeam scattering methods

October 4, 2023 Page 20 / 25

Conclusions and Outlook

Self-consistent intrabeam scattering methods

October 4, 2023 Page 21 / 25

Literature I

- [BS03] T. J. M. Boyd and J. J. Sanderson. The Physics of Plasmas. Cambridge University Press, 2003. ISBN: 978-0-511-75575-0.
- [FW03] Albert Fannjiang and Lech Wołowski. Noise induced dissipation in Lebesgue-measure preserving maps on d-dimensional torus. Journal of Statistical Physics, 113:335–378, 2003. ISBN: https://doi.org/10.1023/A:1025787124437.
 - [HE] R. W. Hockney and J. W. Eastwood. <u>Computer Simulation</u> <u>Using Particles</u>. CRC Press. ISBN: 978-1-4398-2205-0, Google-Books-ID: nTOFkmnCQuIC.
- [KAS⁺20] Siddharth Karkare, Gowri Adhikari, W. Andreas Schroeder, J. Kevin Nangoi, Tomas Arias, Jared Maxson, and Howard Padmore. Ultracold electrons via near-threshold photoemission from single-crystal cu(100). arXiv:2002.11579, 2020.

Literature II

- [Lee] Hyeri Lee. For brighter electron sources: a cryogenically cooled photocathode and DC photogun. Accepted: 2018-04-26T14:15:46Z.
- [MBW⁺13] J. M. Maxson, I. V. Bazarov, W. Wan, H. A. Padmore, and C. E. Coleman-Smith. Fundamental photoemission brightness limit from disorder induced heating. <u>New Journal</u> of Physics, 15(10):103024, 2013. Publisher: IOP Publishing.
 - [MQ15] Chad Mitchell and Ji Qiang. A Parallel Particle-Particle, Particle-Mesh Solver for Studying Coulomb Collisions in the Code IMPACT-T. In <u>Proceedings of IPAC2015</u>, 2015. https://accelconf.web.cern.ch/ipac2015/papers/ mopma024.pdf.

[Nic83] Dwight R. Nicholson. <u>Introduction to Plasma Theory</u>, chapter Appendix B. 1983. ISBN: 978-0-471-09045-8.

Literature III

- [RMJ] Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd. Fokker-planck equation for an inverse-square force. <u>Physical Review</u>, 107(1):1–6. Publisher: American Physical Society.
- [Tab19] M. Reza Rahimi Tabar. <u>Equivalence of Langevin and</u> <u>Fokker–Planck Equations</u>, pages 61–68. Springer International Publishing, Cham, 2019.
- [XAB⁺] Guoxing Xia, Robert Appleby, William Bertsche, Matthew Harvey, Swapan Chattopadhyay, and Andrew Murray. Ultracold and high brightness electron source for next generation particle accelerators. In <u>Proceedings, 4th</u> International Particle Accelerator Conference.

Literature IV

[XHM⁺] G. Xia, M. Harvey, A. J. Murray, L. Bellan, W. Bertsche, R. B. Appleby, O. Mete, and S. Chattopadhyay. An ultracold low emittance electron source. 9(6):P06011–P06011. Publisher: IOP Publishing.