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Introduction

Exact Description

d2

dt2
x1 = F (x1,v1, ...) Kinetic Description

Langevin model
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coll

Direct Simulation
P3M model

d2

dt2
x1 = F far + F near

F denotes a force, f is the phase space distribution function

The direct simulation approach has two terms representing the far
field F far and the near field F near forces

In the kinetic description,

(
∂f

∂t

)
diff

refers to the diffusion term,

which contains the mean field, while

(
∂f

∂t

)
coll

represents the

collision operator
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Ultracold Sources

Data from [XHM+, KAS+20]

Applications in electron diffraction (imaging) and free electron lasers
profit greatly from high brightness beams.

A promising candidate for such beams are photoinjectors with
ultracold photocathodes.

Observable Magneto
Optical
Traps

Ultra Cold
Photo In-
jector

Regular
Photo injec-
tor

e− Temperature [K] < 10 50 < 1e3 - 1e4
Beam Charge [pC] 1000 - 100-3000
Emittance [mm.mrad] 0.04 ∝ 0.05 1
Brightness [A/m2·sr] 1e16 ∝ 1e16 1e12 - 1e13
Bunch Length [ps] 0.1-1 - < hundreds
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[Lee] [KAS+20]
[XAB+]

[MBW+13]

Direct Computation

Boltzmann

Landau

is valid for

& &

&

Γ: Coupling

Θ: Degeneracy

Λ: Coulomb Log.

γ: Relativ. Factor

Self-consistent intrabeam scattering methods October 4, 2023 Page 4 / 25



The P3M Algorithm
Implementation following [HE]

P3M = Particle-Particle + Particle-Mesh

high resolution from PP part

good performance from PM part

adjustable influence of Coulomb collisions

Particle-Particle (PM):

1 interpolate charges to mesh (CIC, NGP,...)

2 solve for potential Φ using an FFT solver (fast Possion solver)

3 compute forces by F = −∇Φ

4 interpolate forces to particles ⇒ Electric field

Particle-Particle (PP):

1 compute linked lists for particles in interaction radius re
2 compute short range forces

3 update electric field
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The Poisson Equation

The electrostatic potential Φ(r) of a system of interacting point charges
qi(r) with charge distribution ρ(r) is described by the Poisson Equation.

∇2Φ(r) = −ρ(r)

With the appropriate Green’s function

G(r, r′) =
1

|r − r′|

interpreted as the potential that arises due to a point charge at r′, the
solution for an arbitrary charge distribution is given by the convolution

Φ(r) =

∫
G(r, r′)ρ(r′)d3r′
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Interaction Splitting I

The main concept behind the P3M algorithm is a splitting of the
interaction function G(r) into a short-range contribution Gpp(r) and a
long-range contribution Gpm(r). This splitting can be done using a
Gaussian screening charge distribution

G(r) =
1

r
=

1− erf(αr)

r︸ ︷︷ ︸
GPP

+
erf(αr)

r︸ ︷︷ ︸
GPM
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Interaction Splitting II
Gaussian shaped (S3) screening charge, α = 2

0. 0.5 1. 1.5 2.
r

1.

2.

3.

4.

5.

f(r)
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Disorder Induced Heating (DIH) Process

in a cold beam (near-zero temperature) with high density, stochastic
Coulomb interactions (collisions) encounter

Γ and known from (cold) plasma theory to be between 0.2 and 2
[MBW+13]

in order to achieve this ratio, the local disorder is transformed into
disorder associated with the particle momenta during the simulation

the phase space volume increases ⇒ the beam is heated

equilibrium solution ⇒ solving the hypernetted-chain equation
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DIH Setup for Validation

The experimental setup and simulation parameters from [MQ15].

spherical, cold beam of radius R = 17.74 µm and charge Q = 25 fC
with uniform spatial distribution

constant focusing applied

cubical domain with edge length L = 100 µm

P3M simulation over 5 plasma periods

MPM = 2563; rc varying from 0 µm to 3.125 µm

simulation over 1000 time-steps

the normalized x−emittance for the thermal equilibrium is

εeqx,n = 0.491 nm

obtained by solving the hypernetted-chain equation
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P3M Results - DIH
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Vlasov-Poisson Equation

Vlasov-Poisson Equation
∂f

∂t
+ v · ∂f

∂r
+
F

m

∂f

∂v
=

(
∂f

∂t

)
coll

,

∇2
rφ(r) = −ρ(r)

ε0
.

(1)

→ How do we determine the r.h.s.

(
∂f

∂t

)
coll

?

Self-consistent intrabeam scattering methods October 4, 2023 Page 12 / 25



Fokker-Planck Equation I

Story ...

The collision term (∂f/∂t)coll should capture changes to the density
function f(r,v) due to interactions between particles ⇒ relaxation
towards equilibrium.

Picture: a test particle traveling through a background of equally
charged particles (“scatterers”). On its path it gets influenced by
the electric force of these nearby particles.

However, the interactions are limited to a Debye radius λD,
“shielding” the test particle off from particles farther away.

These collisions exhibit two important properties:

1 an individual collision (i.e. its potential energy) is weak compared to
the thermal energy of the system [BS03], causing only small angle
deflections. It can be shown that the accumulated effect of these far
outweigh more rare strong interactions.
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Fokker-Planck Equation II

2 Second, the considered time-scale is usually much larger than the
collision time τc but still smaller than the dissipation time ν [Nic83]:

τc � ∆t� ν, (2)

where the dissipation time ν is of the scale after which a small
perturbation to the phase space density is observed to be below a
fixed threshold [FW03].

⇒ spatial position not affected, (∂f/∂t)coll in velocity space

⇒ strong similarity to properties known from Brownian motion

⇒ Fokker-Planck formulation of the collision operator is applicable
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Fokker-Planck Equation III

In the Fokker-Planck approach we advance our phase space density f in
time by ∆t via an integral over a probability function ψ(v,∆v) that
defines how likely it is that a particle with velocity v experiences a
change in velocity ∆v. Taylor expansion up to order 2 of this integral
results in the FP operator:(

∂f

∂t

)
coll

= − ∂

∂v
·
(
f
〈∆v〉
∆t

)
+

1

2

∂2

∂v∂v
:

(
f
〈∆v∆v〉

∆t

)
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The Rosenbluth’s approach to FP I

(
∂f

∂t

)
coll

= − ∂

∂v
·
(
f
〈∆v〉
∆t

)
+

1

2

∂2

∂v∂v
:

(
f
〈∆v∆v〉

∆t

)

Collision Coefficients

F d(v) =
〈∆v〉
∆t

= Γ
∂h(v)

∂v
,

D(v) =
〈∆v∆v〉

∆t
= Γ

∂2g(v)

∂v∂v
.

F d(v): Dynamic friction coefficient
D(v): Diffusion coefficient

Poisson Problems [RMJ].

∇2
vh(v) = −8πf(r,v),

∇2
v∇2

vg(v) = −8πf(r,v).
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The Rosenbluth’s approach to FP II

We’ve talked about the randomness in how these collisions happen,
how do we reflect this in the timestepping procedure?

Langevin Eq. arises naturaly when a variable experience a slow time
variation in velocity due to many small random forces.

Idea based on Markov processes

Langevin Equation [Tab19]

dv(t) = a(v, t)︸ ︷︷ ︸
F d(v)

dt+ b(v, t)︸ ︷︷ ︸
Q(v)

dW (t), (3)

dW (t) = ξtdt, ξt ∼ N (0, 1). (4)
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Particle-in-Cell + FP I

SCATTER:
Interpolate charge or

velocity space distribution of
macro-particles onto grid

INITIALIZATION:
Particle positions, velocities

and charges

-SOLVE:
Compute fields  and

 from 

GATHER:
Interpolate fields

from grid to particles

PUSH:
Update particle

position and velocity

-SOLVE:
Compute fields  and

 from 
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DIH again
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Preliminary P3M Results for SwissFEL @13m
in collaboration with Sven Reiche and Thomas Lucas Geoffrey

Can switch on/off collisions in OPAL:
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Conclusions and Outlook
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