Experience with magnetic linearization, longitudinal jitter and outlook to FEL

LEDS workshop Frascati Oct 2023

Sara Thorin

ESS

Introduction – MAX IV facility

- Top-up
- Short Pulse Facility
 - Femtomax beamline

Sara Thorin Oct 2023

	Design	Currently
Energy	1.5 GeV/ 3GeV	1.5 GeV/ 3GeV
Repetition rate	10 Hz	10 Hz
Charge	0.6-1 nC/shot	0.3 nC/shot
Emittance	10 mm mrad	5 mm mrad
Energy spread	<0.2%	<0.25 %

	Design	Currently
Energy	1.5 GeV/ 3GeV	1.5 GeV/ 3GeV
Repetition rate	10 Hz	10 Hz
Charge	0.6-1 nC/shot	0.3 nC/shot
Emittance	10 mm mrad	5 mm mrad
Energy spread	<0.2%	<0.25 %

High brightness driver for the Short Pulse Facility

	Design	Currently
Energy	3GeV	3 GeV
Repetition rate	100 Hz	10 Hz
Charge	100 pC	20-200 pC
Bunch length (rms)	100 fs	3 ps – 30 fs
Emittance	1 mm mrad	2-3 mm mrad
Energy spread	<0.4%	0.3-0.7%

Energy	1.5 GeV/ 3GeV	1.5 GeV/ 3GeV
Repetition rate	10 Hz	10 Hz
Charge	0.6-1 nC/shot	0.3 nC/shot
Emittance	10 mm mrad	5 mm mrad
Energy spread	<0.2%	<0.25 %

SPF	Design	Currently
Energy	3GeV	3 GeV
Repetition rate	100 Hz	10 Hz
Charge	100 pC	20-200 pC
Bunch length (rms)	100 fs	3 ps – 30 fs
Emittance	1 mm mrad	2-3 mm mrad
Energy spread	<0.4%	0.3-0.7%

MAX IV bunch compressors – double achromats with magnetic linearisation

	BC1	BC2
R56	3.2 cm	2.6 cm
T566	6.6 cm	4.3 cm

Sara Thorin Oct 2023

MAX IV bunch compressors – double achromats with magnetic linearisation

Why magnetic linarisation?

- No need for a harmonic cavity lineariser =
 - Economy
 - Reliability
 - Simplicity
- BC can work as beam spreader

•••

- No church-towers, the current peak is in the center. -> High peak current, short pulses.
- Magic angle -> Reduce RF amplitude induced timing jitter to zero.
- More in Peter Williams talk after this...

Sara Thorin Oct 2023

Early compression characterisation – streaking the beam in BC2

Sara Thorin Oct 2023

•

٠

Transverse deflecting cavity!!!

MAXIV

Sara Thorin Oct 2023

Compression scan – changing the phase before BC1

time [fs]

Sara Thorin Oct 2023

Compression scan – longitudinal phase space

Slide from Erik Mansten, Johan Lundqvist

Sara Thorin Oct 2023

T566 scan, changing the sextupoles in BC1

100

100

= 48 fs

100

200

200

200

x axis on a screen [mm]

300

x axis on a screen [mm]

LEDS - Frascati

400

Sara Thorin Oct 2023

Linearization scan – Longitudinal phase space

Sara Thorin Oct 2023

LEDS - Frascati

MAXIV

Shortest bunch measured

MAXIV

Sara Thorin Oct 2023

First attempt at double bunches

- Compressed only in BC1
- Measured with BC2 streak
- Two electron bunches within one RF-bucket
- First attempt, used only the crystals in the laser pulse stretcher to achieve two laser pulses.

Experiment

Sara Thorin Oct 2023

Drawbacks of our achromat compressors

- Normal operation and delivery to the Short Pulse Facility no issues caused by compressors
- For future FEL:
 - Chromaticity need to separate linearization and second order dispersion. Twiss and centroid vary along the bunch longitudinaly.

Future BC upgrade – closing chromatic effects to third order

- Adding quads, sextupoles and possibly octupoles to compressors
- Keep longitudinal slice alpha, beta and centroid flat throughout the pulse
- Compensate for CSR-kick
- Keep longitudinal centroid slice offset low

Svensson, J. B., Charles, T. K., Lundh, O., & Thorin, S. (2019). Thirdorder double-achromat bunch compressors for broadband beams. *Physical Review Accelerators and Beams*, *22*(10), 104401.

Drawbacks of our achromat compressors

- Normal operation and delivery to the Short Pulse Facility no issues caused by compressors
- For future FEL:
 - Chromaticity need to separate linearization and second order dispersion. Twiss and centroid vary along the bunch longitudinally.
 - **Residual energy chirp** the wakes in the linac work towards larger chirp, not to reduce it as for chicane compressors.

For SASE – it doesn't matter - S2E simulations

For seeding – the chirp is an issue

Francesca Curbis FEL chapter of SXL CDR https://www.maxiv.lu.se/beamlines-accelerators/accelerators/soft-x-ray-laser/

Sara Thorin Oct 2023

Variable R56 bunch compressors

Tunable R56, even to negative R56 – chicane like compression -> Wakes in the linac will de-chirp the beam. Tunable R56 also allows us to operate at exactly the magic angle and reduce arrival time jitter!

Gustavo Perez Segurana, Lancaster University & Cockcroft Institute,

Peter Williams, STFC Daresbury Laboratory & Cockcroft Institute

Williams, Peter H., et al. "Arclike variable bunch compressors." Physical Review Accelerators and Beams 23.10 (2020): 100701.

Adam Dixon, Tessa Charles, Liverpool University

Sara Thorin Oct 2023