

Half-wavelength velocity bunching

Giovanni Perosa

giovanni.perosa@physics.uu.se

Uppsala University, FREIA

UPPSALA UNIVERSITET

5th October 2023

Acknowledgement

Giovanni Perosa on the behalf of

Anatoliy Opanasenko

Johan Ribbing

Vitaliy Goryashko

Outline

- *Ångström Laser
- Velocity bunching
- Half-wavelength bunching
- Conclusions & perspectives

Ångström Laser @ FREIA

Aiming for a compact X-ray coherent source

X-ray output parameters	Optical undulator	Broadband beamline (at the sample)	Mono-beamline (at the sample)
X-ray energy range	2-13 keV	2-13 keV	2-8 keV
X-ray energy bandwidth	1 %	1 %	~0.02 %
X-ray pulse duration (FWHM)	< 200 fs	< 200 fs	< 200 fs
Flux (s ⁻¹) at 100 kHz repetition rate	1010	109	107-108
X-ray spot size (FWHM)	8.0 µm	35 µm	41 µm

Ångström Laser @ FREIA

Velocity bunching

S. G. Anderson et al., Phys. Rev. ST Accel. Beams 8, 014401 (2005)

UPPSALA UNIVERSITET

Zero-crossing injection + Chirped and accelerated $\beta_e < \beta_r$

Phase of the wave seen by the electron

$$\phi = kz - \omega t - \phi_0$$
 where $\beta_r = \frac{v_r}{c}$ and $k = \frac{\omega}{\beta_r c}$

The Hamiltonian is

$$H = \gamma - \beta_r \sqrt{\gamma^2 - 1} - \frac{\alpha \cos \phi}{\text{RF field}}$$

PRO: Both compression and acceleration take place within the same accelerator section

Half-wavelength bunching

1-D Longitudinal phase space portrait

Along the cavity

Half-wavelength bunching: 1-cell simulation Instantaneous electric field Electron phase

Half-wavelength bunching: 9-cell simulations

Half-wavelength bunching:				
9-cen simulation				
Instantaneous electric field				
Electron phase				

Half-wavelength bunching: 9-cell simulations

We study the dependence of bunch arrival time on gaussian jitter of parameters

Histogram of Δt_{a}

70 randomly $\sigma_E = 0.05\%$ 60 sampled •N(0, 0.16 ps) $\sigma_{\gamma} = 0.05\%$ 50 40 30 $\sigma_{\phi} = 0.05^{\circ}$ ~160 fs The time jitter can be reduced 20 down to 16 fs if the accelerator 10 stability is pushed to the state-0 of-the-art regime 800 -600 -400 -200 200 400 600 0 Δt_{β} [fs] $\sigma_t^2 \,[\text{fs}^2] \approx \left(\frac{1.12 \,\sigma_E}{\text{kVm}^{-1}}\right)^2 + \left(3.8 \frac{\sigma_\gamma}{10^{-4}}\right)^2 + \left(29.6 \frac{\sigma_\phi}{0.01^o}\right)^2$

Standard deviation for the noise

Conclusions & Perspectives

- \checkmark We showed an interesting regime of non-adiabatic temporal compression
- ✓ The discovered mechanism of compression, which is another mode of velocity bunching, opens the door for obtaining very high electron densities in the phase space
- ✓ A 3-ps 16-pC 1-MeV electron bunch is compressed to 21 fs rms and accelerated to 12 MeV in a TESLA superconducting cavity
- \checkmark We discussed the performance and stability of a 9-cell cavity
- □ Experimental proof-of-principle
- $\hfill\square$ Employ this mechanism for UED and ICS

Thank you for your attention!

Back-up slides

Inverse Compton Scattering

UNIVERSITET

Gun + Booster

Parameter	Symbol	Value	Units
Peak accelerating field	$E_{\rm acc}$	35	MV/m
Emission phase	-	0	degrees
Charge	Q	16	\mathbf{pC}
Energy	W	130	meV
Energy spread	δW	80	meV
rms x -bunch size	σ_x	107	$\mu { m m}$
rms bunch duration	σ_t	30	fs
rms x -beam divergence	σ'_x	2.47	mrad
rms thermal x -emittance	ε_x	44	nm

Parameter	Symbol	Value	Units
Charge	Q	16	pC
Energy	W	420	keV
Correlated energy spread	δW	5.3	keV
rms x -beam size	σ_x	2	$\mathbf{m}\mathbf{m}$
rms z -beam size	σ_z	0.46	$\mathbf{m}\mathbf{m}$
rms x -beam divergence	σ'_x	24.4	mrad
rms normalised x -emittance	ε_x	57	nm
rms normalised z -emittance	ε_z	0.24	$\rm keV \ mm$
ratio of x and y emittances		0.99	

Half-wavelength bunching: 9-cell simulations

Simulations

Code used: ASTRA Charge: 16 pC Number of particles:

