
Globular cluster Messier 2 by Hubble Space Telescope.. Located in the constellation of Aquarius, also known as NGC 7089. 
M2 contains about a million stars and is located in the halo of our Milky Way galaxy.
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Coulomb interactions

Macroscopic: 
• Space-charge 
• Average repulsion force 
• Bunch expands 
• Deformations in phase-space 
• Governed by Poisson’s equation 

Microscopic: 
• Disorder induced heating 
• Neighbouring particles ‘see’ each other 
• Potential energy → momentum spread 
• Stochastic effect 
• Governed by point-to-point interactions

Nature Photonics 
Vol 2, May 2008 

M. Centurion et. al. 
And many others…

PRL 93, 094802 
O.J. Luiten et. al.

Example GPT simulations

JAP 102, 093501 
T. van Oudheusden et. al.

PRST-AB 9, 044203 
S.B. van der Geer et. al.

PRL 102, 034802  
 M. P. Reijnders et. al.

JAP 102, 094312  
S.B. van der Geer et. al.

http://dx.doi.org/10.1103/PhysRevLett.93.094802
http://dx.doi.org/10.1063/1.2801027
http://dx.doi.org/10.1103/PhysRevSTAB.9.044203
http://dx.doi.org/10.1103/PhysRevLett.102.034802
http://dx.doi.org/10.1063/1.2804287


Ultrafast Electron Diffraction example (UED)

UED 100 fC 
• 625000 particles 
• GPT treecode (2011)

Macroscopic

Microscopic



UED example: All interactions (right), versus PIC (left)

Barnes-HutParticle-in-Cell
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Broadening due to stochastic effects 

Local differences 
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Law of distribution of the nearest neighbor 
Chandrasekhar, Stochastic problems in Physics and astronomy, Reviews of Modern Physics 15, 1943.



w(r) dr 
• Probability that neareast neighbor is between  and  
• Assuming infinite random distribution with number density n. 

r r + dr

w(r) = (1 − ∫
r

0
w(r)dr) 4πr2n

Law of distribution of the nearest neighbor: w(r)

Probability for no 
particle closer than r 

1 − ∫
r

0
w(r)dr

Probability for 
particle between r and r + dr 

4πr2n dr

r

dr

Chandrasekhar, Stochastic problems in Physics and astronomy, 
Reviews of Modern Physics 15, 1943.



 

Yields: 

 

w(r) = (1 − ∫
r

0
w(r)dr) 4πr2n

w(r) =
4πr2

e 4
3 πr3n

Law of distribution of the nearest neighbor: w(r)

r

Subramanyan Chandrasekhar 
1910 - 1995, Lahore, India (now Pakistan) 

1983 nobel prize: "for his theoretical studies 
of the physical processes of importance 

to the structure and evolution of the stars" 



Law of distribution of the nearest neighbor: w(r)

w(r) =
4πr2

e 4
3 πr3n
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Wigner-Seitz radius: rs

Assumptions: 
• Volume per particle:  

• Volume of a sphere  

Yields: 

V = 1/n

V = 4
3 π r3

s

rs =
1

3 4
3 πn

Seitz 
Tobacco lobbyist 
Climate change denier

Wigner 
Nobel prize in physics

Fame Fortune



Nearest neighbor in k-dimensions

Relevant: 
• ‘Pencil beam’ regime in electron microscopes 
• ‘Pancake’ regime near photocathodes 

k-dimensions

r / rs

w(r)



Disorder induced heating
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Nearest neighbor: Potential

Electrostatic potential: 

•  

Average potential energy: 

•
 

Potential energy at average position: 

•

V(r) =
q2

4πϵ0r

V̄ = ∫
∞

0
V(r)w(r)dr =

1

2 3 6π2
Γ ( 2

3 ) n1/3q2
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1

2 3 6π2
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Disorder induced heating

Initial random distribution 
• Gives excess electrostatic energy 
• Will be released over time 

•  

Example: 
• n=1018 / m3 
• T=4 K 
• 1/ωp=17 ps

3
2 kT = V̄ − V(r̄) ≈ 0.03
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Nearest neighbor: Electrostatic field

Electrostatic field: 

•          therefore   

Probability W( |E| ) 

•
 

•
                

|E | =
q

4πr2
r ( |E |) =

q
4πϵ0 |E |

W ( |E |) = w (r |E |)
d r ( |E |)

d |E |

=

exp − n

6 π( |E |ϵ
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3/2 n ( q
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4 π |E |5/2



Nearest neighbor: Electrostatic field
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Ultrafast Electron Diffraction example (UED)

UED 100 fC 
• 625000 particles 
• GPT treecode (2011)

Macroscopic

Microscopic



Data analytics for divergent tails

Student 
• FWHM 
• Disadvantage: Bin-size affects the results 

Commercial company (semiconductor) 
• Use d50 or d95 

Hardcore beamline physicist 
• Cut 5% of the outliers 
• And keep using rms-based quantities



How NOT to simulate stochastic effects

Do NOT naively use macro particles 
That is NOT a good idea 
Seriously, do NOT do this 
It will NOT give correct results 

Why NOT: 

•  

• If we have  particles per macro particle, we get for : 

•  

• Emittance scales with , but whatever your metric, forget it.

3
2 kT = V̄ − V(r̄) ≈ 0.03
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Particle-in-cell: (Multi-grid) Poisson solver

Key features 
• Anisotropic meshing to reduce number of empty nodes 

Multi-grid solver 
• Developed by Dr. G. Pöplau 

Rostock University, Germany 
• Scales O(N~1.1) in CPU time 
• Typical use: ~10k to ~100M particles 

Implementation 
• MPI-usage reduces noise: 
• We track more particles, on same grid 

• Gisela Pöplau, Ursula van Rienen, Bas van der Geer, and Marieke de 
Loos, Multigrid algorithms for the fast calculation of space-charge effects 
in accelerator design, IEEE Transactions on magnetics, Vol 40, No. 2, 
(2004), p. 714.

DESY TTF gun at z=0.25 m, 200k particles.



GPT: Barnes-Hut

Hierarchical tree algorithm 
• Includes stochastic Coulomb interactions in 3D 
• O(N log N) in CPU time 
• MPI implementation in GPT distributes same tree over all nodes 

• J. Barnes and P. Hut, Nature 324, (1986) p. 446.

Division of space Tree data structure
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Possible simulation approaches

Particle coordinates

Transform particle positions to zero momentum frame

Obtain electrostatic field: 

- O(N2) on a GPU 

- Barnes & Hut (GPT) 

- Particle-Particle-Particle-Mesh 
- Fast multipole method

Transform E-field to lab frame (gives E and B)

Track equations of motion

Particles 
1k 

10k 
100k 

1M 
10M 

100M 
1G



1

The end

GPT 
Bas van der Geer



Globular cluster Messier 2 by Hubble Space Telescope.. Located in the constellation of Aquarius, also known as NGC 7089. 
M2 contains about a million stars and is located in the halo of our Milky Way galaxy.



Space-charge models in GPT

Intuitive (naïve) model 
• 3D point-to-point Relativistically correct 

  O(N2), N≈1000, no need for rest-frame 

Barnes&Hut treecode 
• 3D point-to-point  O(N log N), N≈1M, rest-frame 

Special cases 
• 2D point-to-circle Cylindrically symmetric set-up 
• 2D point-to-line Continuous beams 

  O(N2), N≈1000, fast if applicable 

PIC model 
• 3D mesh-based Anisotropic multi-grid Poisson solver 

  O(N), N≈1M, rest-frame 
  Developed with Rostock University



GPT overview

GPT tracks particles in time-domain through EM fields 
• Relativistic equations of motion 
• Fully 3D, including all non-linear effects

Analytical 
expressions 

E=−∇V

Field-maps
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Equations of motion

GPT tracks sample particles in time-domain 
• Equations of motion 

• Include all non-linear effects 

• Solved with 5th order embedded Runge Kutta, adaptive stepsize 
• GPT can easily track millions of particles on a normal PC 

• Challenge: E(r,t), B(r,t), flexibility without compromising accuracy

dp
dt

= q E+ dr
dt

×B⎛
⎝⎜

⎞
⎠⎟

dr
dt

= c p
m2c2 + p ⋅p



Clear and honest objectives: 
Is this what we want?

No supermarket 
No drinking water 
No electricity 
No internet 
No school for the children 
No …

Jamesby island, Tobago Cays, St. Vincent and the Grenadines



GPT ‘paradise’ that doesn’t exist

Over the years I have heard many 
‘dreams’: 
• Track as many particles as possible 
• Use 3D field-maps for the entire set-up 
• Optimise for hundreds of variables 
• Fancy user interfaces 
• We need the lowest rms-emittance 
• … 

All wrong. In fact: 
• We want to design a machine 

that actually works 
• We want to understand why an 

existing machine does not work (and fix it)

Unreachable island

Broken outboard engine



Equations of motion: Accuracy

ALL simulation results are wrong 

The question is: 
• Are the results usable? 
• And that, depends on your goals! 

Aim: 
• Find the lowest accuracy that meets your goals 
• Barely good enough is what we want 

GPT algorithm: 
• Tries to find the largest stepsize 

where all particles still meet accuracy criteria



PIC: Energy spread in rest-frame

Assumptions 
• Zero momentum frame with Lorentz factor γv 

• Relative kinetic energy spread α, measured in laboratory frame 

  Kinetic energy Lorentz factor 
• Average particle: Ekin=(γv–1) mc2  1 

• Fastest particle: (1+α) Ekin 

• Slowest particle: (1–α) Ekin 

Conclusion 
• You need excessive energy spread to get relativistic velocities in 

the zero-momentum frame


