

Macroscopic:

- Space-charge
- Average repulsion force
- Bunch expands
- Deformations in phase-space
- Governed by Poisson's equation

Microscopic:

- Disorder induced heating
- Neighbouring particles 'see' each other
- Potential energy \rightarrow momentum spread
- Stochastic effect
- Governed by point-to-point interactions

Example GPT simulations
PRL 93, 094802
O.J. Luiten et. al.

JAP 102, 093501
T. van Oudheusden et. al.

PRST-AB 9, 044203 S.B. van der Geer et. al.

PRL 102, 034802
M. P. Reijnders et. al. ${ }^{5}$

JAP 102, 094312 S.B. van der Geer et. al.

Ultrafast Electron Diffraction example (UED)

UED 100 fC

- 625000 particles
- GPT treecode (2011)

UED example: All interactions (right), versus PIC (left) $\stackrel{=00}{=00}$

Coulomb interactions

GPT simulations: $n=10^{18} \mathrm{~m}^{-3}$

Law of distribution of the nearest neighbor

VII. THE LAW OF DISTRIBUTION OF THE NEAREST NEIGHBOR IN A RANDOM DISTRIBUTION OF PARTICLES

This problem was first considered by Hertz (see reference 71 in the Bibliographical Notes for Chapter IV).

Let $w(r) d r$ denote the probability that the nearest neighbor to a particle occurs between r and $r+d r$. This probability must be clearly equal to the probability that no particles exist interior to r times the probability that a particle does exist in the spherical shell between r and $r+d r$. Accordingly, the function $w(r)$ must satisfy the relation

$$
\begin{equation*}
w(r)=\left[1-\int_{0}^{r} w(r) d r\right] 4 \pi r^{2} n, \tag{669}
\end{equation*}
$$

where n denotes the average number of particles per unit volume. From Eq. (669) we derive:

$$
\begin{equation*}
\frac{d}{d r}\left[\frac{w(r)}{4 \pi r^{2} n}\right]=-4 \pi r^{2} n \frac{w(r)}{4 \pi r^{2} n} . \tag{670}
\end{equation*}
$$

Hence

$$
\begin{equation*}
w(r)=\exp \left(-4 \pi r^{3} n / 3\right) 4 \pi r^{2} n, \tag{671}
\end{equation*}
$$

since, according to Eq. (669)

$$
\begin{equation*}
w(r) \rightarrow 4 \pi r^{2} n \quad \text { as } \quad r \rightarrow 0 . \tag{672}
\end{equation*}
$$

Equation (671) gives then the required law of distribution of the nearest neighbor.

Law of distribution of the nearest neighbor: $w(r)$

$w(r) d r$

- Probability that neareast neighbor is between r and $r+d r$
- Assuming infinite random distribution with number density n.

$$
w(r)=\left(1-\int_{0}^{r} w(r) d r\right) 4 \pi r^{2} n
$$

Chandrasekhar, Stochastic problems in Physics and astronomy, Reviews of Modern Physics 15, 1943.

Law of distribution of the nearest neighbor: $w(r)$

$$
w(r)=\left(1-\int_{0}^{r} w(r) d r\right) 4 \pi r^{2} n
$$

Yields:

$$
w(r)=\frac{4 \pi r^{2}}{e^{\frac{4}{3} \pi r^{3} n}}
$$

Subramanyan Chandrasekhar 1910-1995, Lahore, India (now Pakistan)

1983 nobel prize: "for his theoretical studies of the physical processes of importance to the structure and evolution of the stars"

Law of distribution of the nearest neighbor: $w(r)$

$$
\begin{aligned}
& w(r)=\frac{4 \pi r^{2}}{e^{\frac{4}{3} \pi r^{3} n}} \quad \text { Average distance: } \\
& w(r) 1.2
\end{aligned}
$$

Assumptions:

- Volume per particle: $V=1 / n$

II

- Volume of a sphere $V=\frac{4}{3} \pi r_{s}^{3}$

Yields:

$$
r_{s}=\frac{1}{\sqrt[3]{\frac{4}{3} \pi n}}
$$

Fame

Fortune

Seitz
Tobacco lobbyist
Climate change denier

Nearest neighbor in k-dimensions

Relevant:

- 'Pencil beam' regime in electron microscopes
- 'Pancake' regime near photocathodes

Disorder induced heating

Random processes

\downarrow
Excess potential energy U

High U Low U

$$
\left.\begin{array}{rl}
\sigma_{p_{x}} & =\sqrt{m k T_{x}} \\
& =m c \frac{\varepsilon_{x}}{\sigma_{x}}
\end{array}\right\} \Rightarrow T_{x}=\frac{m c^{2}}{k} \frac{\varepsilon_{x}^{2}}{\sigma_{x}^{2}}
$$

$$
B_{\perp}=\frac{J}{\pi k T}
$$

Electrostatic potential:

- $V(r)=\frac{q^{2}}{4 \pi \epsilon_{0} r}$

Average potential energy:
$\bar{V}=\int_{0}^{\infty} V(r) w(r) d r=\frac{1}{2 \sqrt[3]{6 \pi^{2}}} \Gamma\left(\frac{2}{3}\right) \frac{n^{1 / 3} q^{2}}{\epsilon_{0}}$

Potential energy at average position:
$V(\bar{r})=\frac{1}{2 \sqrt[3]{6 \pi^{2}}} \frac{1}{\Gamma\left(\frac{4}{3}\right)} \frac{n^{1 / 3} q^{2}}{\epsilon_{0}}$

Disorder induced heating

Initial random distribution

- Gives excess electrostatic energy
- Will be released over time
- $\frac{3}{2} k T=\bar{V}-V(\bar{r}) \approx 0.03 \frac{n^{1 / 3} q^{2}}{\epsilon_{0}}$

Example:

- $\mathrm{n}=10^{18} / \mathrm{m}^{3}$
- $\mathrm{T}=4 \mathrm{~K}$
- $1 / \omega_{p}=17 \mathrm{ps}$

Electrostatic field:
. $|E|=\frac{q}{4 \pi r^{2}} \quad$ therefore $r(|E|)=\sqrt{\frac{q}{4 \pi \epsilon_{0}|E|}}$

Probability W(|E|)

. $W(|E|)=w(r|E|)\left|\frac{d r(|E|)}{d|E|}\right|$

$$
=\frac{\exp \left[-\frac{n}{6 \sqrt{\pi}\left(\frac{|E| \epsilon}{q}\right)^{3 / 2}}\right] n\left(\frac{q}{\epsilon}\right)^{3 / 2}}{4 \sqrt{\pi}|E|^{5 / 2}}
$$

Nearest neighbor: Electrostatic field

Ultrafast Electron Diffraction example (UED)

UED 100 fC

- 625000 particles
- GPT treecode (2011)

Data analytics for divergent tails

Student

- FWHM
- Disadvantage: Bin-size affects the results

Commercial company (semiconductor)

- Use d50 or d95

Hardcore beamline physicist

- Cut 5\% of the outliers
- And keep using rms-based quantities

How NOT to simulate stochastic effects

Do NOT naively use macro particles
 That is NOT a good idea
 Seriously, do NOT do this
 It will NOT give correct results

Why NOT:

- $\frac{3}{2} k T=\bar{V}-V(\bar{r}) \approx 0.03 \frac{n^{1 / 3} q^{2}}{\epsilon_{0}}$
- If we have α particles per macro particle, we get for T_{α} :
- $\frac{3}{2} k T_{\alpha} \approx 0.03 \frac{\left(\frac{n}{\alpha}\right)^{1 / 3}(\alpha q)^{2}}{\epsilon_{0}}=\alpha^{5 / 3} \frac{3}{2} k T$
- Emittance scales with $\sqrt{T / m}$, but whatever your metric, forget it.

Particle-in-cell: (Multi-grid) Poisson solver

Key features

- Anisotropic meshing to reduce number of empty nodes

Multi-grid solver

- Developed by Dr. G. Pöplau Rostock University, Germany
- Scales O($\left.\mathrm{N}^{\sim 1.1}\right)$ in CPU time
- Typical use: $\sim 10 \mathrm{k}$ to $\sim 100 \mathrm{M}$ particles

Implementation

- MPI-usage reduces noise:
- We track more particles, on same grid

DESY TTF gun at $z=0.25 \mathrm{~m}, 200 \mathrm{k}$ particles.

- Gisela Pöplau, Ursula van Rienen, Bas van der Geer, and Marieke de Loos, Multigrid algorithms for the fast calculation of space-charge effects in accelerator design, IEEE Transactions on magnetics, Vol 40, No. 2, (2004), p. 714.

Hierarchical tree algorithm

- Includes stochastic Coulomb interactions in 3D
- O($N \log N$) in CPU time
- MPI implementation in GPT distributes same tree over all nodes

Tree data structure

- J. Barnes and P. Hut, Nature 324, (1986) p. 446.

Scaling

spacecharge3D
spacecharge3Dtree
scP2Pgpu

Possible simulation approaches

Particle coordinates

Transform particle positions to zero momentum frame

Particles Obtain electrostatic field:
1k
10k - O(N2) on a GPU
100k
1M
10M

- Barnes \& Hut (GPT)

100M

- Particle-Particle-Particle-Mesh

1G - Fast multipole method

Transform E-field to lab frame (gives E and B)

Track equations of motion

The end

$$
\begin{aligned}
& -1+2
\end{aligned}
$$

$$
\begin{aligned}
& \text { - + Cor }
\end{aligned}
$$

Space-charge models in GPT

Intuitive (naïve) model

- 3D point-to-point Relativistically correct $\mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{N} \approx 1000$, no need for rest-frame

Barnes\&Hut treecode

- 3D point-to-point $\mathrm{O}(\mathrm{N} \log \mathrm{N}), \mathrm{N} \approx 1 \mathrm{M}$, rest-frame

Special cases

- 2D point-to-circle Cylindrically symmetric set-up
- 2D point-to-line Continuous beams
$\mathrm{O}\left(\mathrm{N}^{2}\right), \mathrm{N} \approx 1000$, fast if applicable

PIC model

- 3D mesh-based Anisotropic multi-grid Poisson solver $\mathrm{O}(\mathrm{N}), \mathrm{N} \approx 1 \mathrm{M}$, rest-frame Developed with Rostock University

GPT tracks particles in time-domain through EM fields

- Relativistic equations of motion
- Fully 3D, including all non-linear effects

Initial conditions

External fields
Wakefields/CSR

Phase space
Coulomb interactions

Field-maps
Analytical
expressions
$E=-\nabla V$

All interactions

Equations of motion

GPT tracks sample particles in time-domain

- Equations of motion

$$
\begin{aligned}
& \frac{d \mathbf{p}}{d t}=q\left(\mathbf{E}+\frac{d \mathbf{r}}{d t} \times \mathbf{B}\right) \\
& \frac{d \mathbf{r}}{d t}=\frac{c \mathbf{p}}{\sqrt{m^{2} c^{2}+\mathbf{p} \cdot \mathbf{p}}}
\end{aligned}
$$

- Include all non-linear effects
- Solved with 5th order embedded Runge Kutta, adaptive stepsize
- GPT can easily track millions of particles on a normal PC
- Challenge: $\mathrm{E}(\mathrm{r}, \mathrm{t}), \mathrm{B}(\mathrm{r}, \mathrm{t})$, flexibility without compromising accuracy

Clear and honest objectives: Is this what we want?

No supermarket No drinking water No electifity
No internet
No school for the children
No

GPT 'paradise' that doesn't exist

Over the years I have heard many

 'dreams':- Track as many particles as possible
- Use 3D field-maps for the entire set-up
- Optimise for hundreds of variables
- Fancy user interfaces

- We need the lowest rms-emittance

All wrong. In fact:

- We want to design a machine that actually works
- We want to understand why an existing machine does not work (and fix it)

Equations of motion: Accuracy

ALL simulation results are wrong

The question is:

- Are the results usable?
- And that, depends on your goals!

Aim:

- Find the lowest accuracy that meets your goals
- Barely good enough is what we want

GPT algorithm:

- Tries to find the largest stepsize where all particles still meet accuracy criteria

PIC: Energy spread in rest-frame

Assumptions

- Zero momentum frame with Lorentz factor γ_{v}
- Relative kinetic energy spread α, measured in laboratory frame
Kinetic energy Lorentz factor
- Average particle:
- Fastest particle:
- Slowest particle:

$$
\begin{aligned}
& E_{\mathrm{kin}}=\left(\gamma_{v}-1\right) \mathrm{mc}^{2} \\
& (1+\alpha) E_{\mathrm{kin}} \\
& (1-\alpha) E_{\mathrm{kin}}
\end{aligned} \quad \gamma_{u^{\prime}}=1+\frac{1}{2} \frac{\gamma_{v}-1}{\gamma_{v}+1} \alpha^{2}+O\left(\alpha^{3}\right)
$$

Conclusion

- You need excessive energy spread to get relativistic velocities in the zero-momentum frame

