
alexander.brynes@elettra.euLEDS Workhop, Frascati, Italy, 3 – 5 Oct 2023

Coherent Synchrotron Radiation and 
Microbunching Instability at FERMI

1

Alex Brynes

Elettra-Sincrotrone Trieste



alexander.brynes@elettra.euLEDS Workhop, Frascati, Italy, 3 – 5 Oct 2023

Contents

2

1)Coherent Synchrotron Radiation

2)Microbunching Instability

3)Conclusions & Future Work

Note: This talk is about CSR 
and MBI in FELs, not rings



alexander.brynes@elettra.euLEDS Workhop, Frascati, Italy, 3 – 5 Oct 2023

CSR - Theory
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Causes and Consequences
 Free-electron lasers (FELs) require high-brightness electron 

bunches.
 This requires longitudinal compression, most commonly achieved in 

a chicane-like bunch compressor.
 Due to the curved trajectory of the electrons, the radiation emitted 

by trailing particles can influence those in front of it, leading to 
emittance growth and microbunching [1,2]. 

Theoretical Approaches
 Solving for the full electric field radiated is difficult analytically, so 

some assumptions have to be made:
 1D projection of the charge density [3]?
 Stochastic effects due to the long-range interaction 

between radiation cones [4]?
 Rigid longitudinal movement of the beam?

Bunch compressor chicane and beam evolution

Radiative interaction between trailing and leading particle in a dipole

CSR wake potential 
through a bending magnet
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Neural Networks
 Data for CSR kicks generated using 

BMAD and fed into a NN solver [18].
 Achieves 10x speed improvement.

CSR - Simulations
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1D Approach
 Projects the bunch density onto 

the longitudinal axis to compute 
the fields.

 Simplest to implement.
 Can sacrifice accuracy.

Field-based Approach
 Uses a frequency-domain-based 

approach.
 Allows the computation of shielding.
 Not widely used or benchmarked (?)

2D – 3D Approach
 A variety of methods are now available 

which take the transverse extent of the 
bunch into account.

 Some are more brute-force, others are 
based on Green’s functions and FFT.

COMPUTATIONAL EFFORT

ELEGANT  [3], BMAD [5], OCELOT [6] Agoh [7], Novokhatski [8], CSRDG [9]
CSRTrack [10], GPT [11], CSR2D [12], CSR3D 
[13], LW3D [14], CoSyR [15], OpenCSR [16], 
Tang&Stupakov [17]
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CSR - Experiments
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Emittance Growth
 For FELs, the most significant effects 

of CSR are on the transverse emittance.
 It was expected that the 1D CSR 

approximation would break down in 
extreme bunch compression scenarios 
[19].

 This was observed experimentally at 
FERMI as we approached maximum 
compression [20].

 The measured emittance diverged from 
the 1D simulation and agreed better 
with 2D-3D results.

Projected emittance as a function of compression factor at FERMI [20]

Projected emittance as a function of 
compression factor at LCLS [21]Potential deficiency in the 1D CSR model

Summary
 The CSR models we have are reliable in terms of predicting emittance growth.
 Much work has been done in recent years to delve more deeply into simulating more realistic scenarios.
 Simulations are much faster than before!
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Microbunching Instability - Introduction

6

Causes and Consquences
 Charged particle bunches are not smooth – imperfections 

in PI laser pulse, cathode, shot noise.
 These imperfections are amplified by collective 

interactions at characteristic frequencies [21 – 25].
 At the entrance to the FEL, the bunch longitudinal phase 

space can be strongly modulated.
 The FEL then loses longitudinal coherence [26, 27].

Current Issues
 MBI gain is strongly dependent on initial conditions, 

which are largely unknown.
 What is the best way to measure microbunching?
 How accurate are our simulations?
 How to remove microbunching?

Impedances that give rise to 
microbunching [28].

Microbunched longitudinal 
phase space [29]

Simulated longitudinal phase 
space [30]

Theoretical 
microbunching gain [2]
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Direct Measurement – Transverse 
Deflector
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RF deflector Dipole magnet

Longitudinal 
phase space

 Streaking the beam transversely, then bending it with a 
dipole, gives a measurement of the longitudinal phase 
space.

 This allows us to measure the modulations directly in 
both time and energy simultaneously [31]. 

Microbunching is here 
in Fourier space!

 This measurement method gives 
lots of detail, but the analysis is 
complicated. 

 Alternatively, we can use the SPIR 
(see C. Spezzani’s talk)

Bunching factor (left) and plasma oscillation phase (right)
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Simulating Microbunching

Macroparticle Simulations
 Any code that can simulate collective effects can calculate 

microbunching gain.

Semi-Analytic Methods
 Starting with the Vlasov formalism, it is possible to model the 

evolution of the beam as a result of collective effects.

Pros:
•Can be integrated into standard 
tracking routines.
•Allows for direct comparisons 
with measurements.

Cons:
•Numerical noise can have a strong 
effect.
•Non-physical input parameters.
•Significant computational requirements.

Pros:
•Much faster evaluation than 
tracking codes.
•Less susceptibility to numerical 
effects.
•Impacts of individual effects is 
easier to isolate.

Cons:
•It is less clear how to connect 
these results to S2E simulations.

 How best to determine the impact of microbunching, and connect the simulations to real experimental data?
 How do these results impact our understanding of microbunching, and the design of future machines?
 Are we missing anything?

Simulated gain (left) [32] and longitudinal phase space (right) [33]

Results from Vlasov solvers [34, 35]
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Benchmarking Simulations
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The Problem(s)
 Knowing how microbunching develops is strongly 

dependent on the initial conditions (slice energy 
spread, initial modulations), which we can’t 
measure.

 Simulating microbunching requires numerical (non-
physical) inputs – what are the correct settings?

A solution
 Seed microbunching at a known wavelength and see 

how well the model matches the measurement.

Chirped-pulse beating technique [36]

Modulated laser heater 
intensity profile

Measured (above) and 
simulated (below) longitudinal 
phase spaces with modulations 
seeded at 1.8 THz, compressed 

using BC1 (left) and BC2 
(right) [37]

Measured (solid) and simulated (dashed) bunching factor (left) and 
plasma oscillation phase (right) as a function of LH energy for 

different modulation wavelengths.

The model is pretty
reliable!
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Damping Microbunching via Linear 
Optics Control
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𝑏𝑏𝑓𝑓 𝑘𝑘, 𝑠𝑠 ∝ 𝑒𝑒−
𝑘𝑘 𝑠𝑠 2𝑅𝑅562 𝑠𝑠 𝜎𝜎𝛿𝛿𝛿

2

2

 The final bunching factor can 
be damped by the momentum 
compaction damped in the FEL 
transfer line (spreader) [38].

From Linac

To FEL

 We will discuss optics-based alternatives to the laser heater here.
 See talk by P. Amstutz for details about laser heaters. 

FEL performance for different values of R56 in the spreader [38]
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Damping Microbunching via Transverse 
Optics Control
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 On multiple occasions we have found 
configurations with different optics in the 
spreader leading to:
 Reduced MBI signal on SPIR.
 Cleaner FEL spectrum.

 The final bunching factor
can be damped by the 
dispersion invariant

Spreader H-functions for different optics MBI gain in the spreader only 
(Vlasov solver)

FEL sideband area vs. LH pulse energy

FEL1

FEL2
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Conclusions
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CSR
 The limitations of the 1D CSR model have been 

explored experimentally and in simulation.
 More stringent limits on transverse emittance require 

more advanced models.
 Recent developments have shown that it is possible to 

capture these complicated dynamics.

 Investigate new CSR models to compare with 
experimental data. 

 What are the limits of these new models? 
 What is most appropriate to use for extreme/advanced 

compression schemes?
 Is emittance growth the only way of investigating CSR, 

or just the most practical?
 How best to compare arc compression with chicane-

like?

Microbunching
 Microbunching has long been studied as a potential show-

stopper to producing fully coherent FEL radiation.
 Optics-based alternatives to the laser heater show promise 

in improving FEL performance.
 Other proposed and realised schemes are out there!

 Try to develop further optics-based schemes, (H-function, 
IBS) or alternatives (i.e. TGU, different cathode materials). 

 Investigate new methods for diagnosing the instability 
(Radon transform of longitudinal phase space, non-
invasive SPIR, …)

 Determine the range of applicability of macroparticle 
simulations and analytic methods.

 Is it possible in principle (or desirable) to characterise fully 
the microbunching in a low-energy beam?

Next 
steps

Next 
steps
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