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Dielectric response

* General problem: how does condensed matter
respond to the application of an external
pertubation?

* The EM wave is the external pertubation

* First approach:
macroscopic / collective

* Second approach:
microscopic /atomic / particle



Elementary phenomenology

* An electric field applied to a dielectric (no free
charges) polarization

— By distortion
— By orientation
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Dielectric response

* The applied field will in general have a space

and time dependence E (7, t) which will affect
the response




Polarization and susceptibility

* Assume the response of matter to the applied field
is linear

o OK for not too high fields
o not OK for high power visible, EUV and X-ray lasers
* Apply linear response theory

* The electric dipole moment per unit volume is the
polarization vector P

* Within the linear approximation introduce the
electric susceptibility y

}_)) — EOXE



Polarization and susceptibility

e Susceptibility is in general a tensor quantity;
for simplicity here consider it a scalar.

* We will study the scalar relations in the
frequency domain

P(w) = gox(w)E(w)

* The dielectric response of matter determines
X(w)



Dielectric displacement

* The dielectric displacement vector is defined as

l_j — EOE ~+ ﬁ
* The direct proportionality between D and E is
written as
l_j = &p€ E

in which € is the «dielectric constant», better
called permittivity or dielectric function

* Clearly
e=1+y



Dielectric displacement

* We will study dynamics (time dependent
properties)

* Susceptibility and dielectric function are «linear
response functions»

o Independent of the external field
o Describe system properties



The dielectric function
* D(w) = gpe(w)E(w)

o &(w) has a real and imaginary part: e(w) = &;(w) + igy (w)
 The w dependence of € is determined by

o The spectral range

o The corresponding type of excitations possible

o The specific properties of the system

Spectral range Excitation processes

Micro - waves Molecules, free or in solution Molecular rotations
Infra - red Molecules, free or in solution Molecular vibrations
Infra - red Solids Phonons

Valence electron

Visibile — UV Atoms, molecules, solids .
transitions

Core level electron

X - rays Atoms, molecules, solids w
transitions



Dispersion and attenuation

* The dielectric function determines dispersion
and attenuation of an EM wave propagating in a
polarizable medium

o a not too rarefied gas, a liquid, a solid or any other
state of aggregation (liquid crystal, plasma ...)

* In vacuum the dispersion relation for EM waves
IS

w = ck

c is the speed of light in vacuo.



Dispersion and attenuation

* In the medium the dispersion relation is modified by the
presence of the index of refraction n(w):

C
k

@ n(w)

e The index of refraction is

n(w) = ye(wp(w)

* Neglecting magnetic effects, u(w) =1

n(w) =+ &(w)

* n(w) and e(w) are macroscopic quantities which describe the
interaction between the wave and the medium




Dispersion and attenuation

* Consider a plane wave propagating along X

. n(w) w
E =EOe‘(kx_“’t); k(w) = (@)

C
* n(w) has areal and an imaginary part:

n(w) =ny(w) + iny(w)
 Therefore, also the wave number has a real and

Imaginary part

k() = [n; (w) ‘|‘Cin2 (w)] w — () + ik, (@)

ki(w) = nl((é)) w ky(w) = nz((é)) 8



Dispersion and attenuation
¢ k(w) = THERONE — b () + ik (w)

C

oy () = M () = (@

* The effect on the space propagation is

elkx — elkl(w)x e—kz(w)x

\ Y J | Y }

Propagation term || Attenuation term

 The space —time dependence of the wave is thus

E = Eoei[kl(w)x—wt]e—kz(w)x



Dispersion and attenuation

e [ = Eoei[kl(w)x_wt]e_RZ(w)x

e ki(w) = wnlc(w) is the modified wave vector

Cc

o the phase velocity of the wave is v =
nq(w)

* ky(w) = ‘”"ZC(‘”) determines the attenuation of
the wave as it traverses the medium

* n{(w): dispersion (modifies the speed of
propagation)

o If the wave crosses the interface between two media
it will change direction (refraction)

* n,(w): attenuation



The linear attenuation coefficient
kr(w) = %(‘“) . attenuation of the amplitude

Since I < |E|? the attenuation coefficient of the

intensity is
2N, (w)

U= c
If the total thickness traversed is L the trasmitted
intensity I is related to the incident one [ by

L X
IT — Ioe_uL
For an infinitesimal thickness —
Io It
dl

— = —pudx dx




Relation between ¢ (w) e n(w)

* ny(w) +iny(w) = \/51 (w) +igy(w)
* Therefore:

0& =N% —Ny?%, &, =200,
_Jeatlel o J-eitlel
ony = V2 ny; = V2



€(w) and n(w) — weak interaction

e Withe=1+¢"+ie, ife'ande, < 1:
weak interaction limit (X-ray range)

* In this limit
n=1+¢ +ig =1+ +ise,
* By convention, in the weak interaction limit the index of
refraction is written as

nw)=1-6(w) +if(w)

N 1
6—_58, ﬁ—zgz

dand f K1



Typical values of 4 and f (17.5 keV)

e §::10° (plexiglas) — 10~ (Au)
* 3:6 x 1019 (plexiglas) > 1.2 x 10 (Au)
n; s 1

o Refraction is very weak

o Difficult (but not impossible) to construct

«X-ray lens»
o Total external reflection is possible at very small

grazing angles



Model dielectric functions

e Study two simple models for ¢ (w) to illustrate
general features of the dielectric response of
matter

— Static (@ = 0) distortion polarization
— Damped harmonic oscillator




Static distortion polarization

* A static electric field applied to a classical molecule
consisting of point charges: nuclei and electrons

* N charges q; with mass m;, elastically bound to their
equilibrium position by a restoring force

2
— Ny Wy T;
in which 7; is the displacement of the j—th charge in the
direction of the electric field

= j=1,..N

" wjis the resonance frequency of the j—th charge




Static distortion polarization

* The force acting on each charge is q;E

e At equilibrium the displacement of each

charge is
e — _ 4
7} mja)jz E
L2
* The induced dipole momentis p; = U_FE

mj@j

 The total induced dipole moment is
N

mjwjz

j=1




Static distortion polarization

* If the (number) density of molecules is p the
static permittivity is

2

q:
s(a) — O) =1+ %Z?J:l mj{”jz

o Always > 1

o Reasonable behaviour as a function of masses,
density and resonance frequency
»increases with p

> decreases with m; and W;



Damped harmonic oscillator: approximations

* Indescribing the effect of an EM on a collection of charges
which simulate the dielectric response of matter we make the

following important approximations
1) Electric dipole approximation

o A » displacement of charges (neglect spatial variation of field): validity
depends on spectral range

2) Neglect motion of nuclei, consider only the contribution of

electrons
o Justified in view of the great difference in mass

3) Neglect effect of force q(ﬁ X E) due to magnetic field

o Justified since it is weaker than gE

4) Neglect «radiation damping» due to emission of radiation
o An accelerated charge will always emit radiation: it will thus lose energy
o This effect is often considered as due to a «self —force».




Damped harmonic oscillator

* First consider a single electron
o equilibrium position in the origin,
displacement r at time ¢t
o charge —e and mass m

o elastically bound to its equilibrium position by a
restoring force

—Mwy*r

» W, is the resonant frequency (frequency of unforced

oscillations)
o subject to a dissipative viscous force
dr
_m —
Yt



Damped harmonic oscillator

e The external electric field is written as
Eoe—ia)t

* The classical equation of motion is

, dr d*r
— My r—myE=mP

—ilwt

—ekje




Damped harmonic oscillator

* We seek a solution of the type r(t) =
R(w)e—w)t
* We easily find

R(w) =

e

E
m(w? — we? + iyw)  °

* The induced dipole moment is

62

Eoe—iwt

p(w)e—iwt —

m(wp?—w?—iyw)



An atom as an ensemble of oscillators

* Model an atom as composed of Z electrons
arranged in M shells with equal characteristic

Wj, Vj
* Each shell contains f; electrons, with

M
2.fi=2
j=1




An atom as an ensemble of oscillators

* Following the single electron result, the
atomic dipole moment induced by the

external field is
M

_ e’ f]
plw) = Wz (w2 — w? —iyjw) &

J=1

* fj is known as the «oscillator strength»: it

determines the contribution of the j—th shell
to the dipole moment



A medium as an ensemble of polarizable atoms

* If the (number) density of identical atoms is p, we
find Iy

2 fi

* g(w) =1+ %Zy - [(wjfi(‘z;j)zzla();jw)zl

2 fiyjw
e s (w) = pe M_ J7]
)= o = [y ey

 Kramers — Heisenberg or electric dipole dielectric
function



Near resonant behaviour

/\ g (@)
| T
«<Anomalous dispersion»

Dispersion

Attenuation s Full width at half maximum
e (©) (FWHM) = %
, A\
‘ \«Resonant absorption»
>
0 @

j

* Asimple model which reproduces well the response of
polarizable media in many frequency ranges
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Jackson, Classical Electrodynamics
© Wiley




Interaction: atomic approach (IR to vis/UV)

Incident beam Absorption processes

Intensity /; (photons/s) * |R: vibrations/phonons

Photon energy ha)  VIS/UV: electronic transitions
Wave vector

— —_—
Transmitted beam
/ N Intensity /1< [,
. Energy hw
Scattering \ Wave vector k
' 4
Inelastic Elastic
hw' + how k' # k how' =how k' # k




Interaction: atomic approach (UV to X-rays)

Incident beam Photoelectric absorption
Intensity /, (photons/s) Electrons
Photon energy fiw K=hw—-Ejg
Wave vector k / Momentum Do
> —
Transmitted beam
/ N Intensity /1< [,
. Energy hw
Scattermg \ Wave vector £k
' 4
Inelastic Elastic
how' + ho k' # k hw' = hw k' # k




Cross section

 Asingle atom in the origin
Interaction produces dN particles per
unit time in the solid angle d{}

d

- [

41T

[0] = cm?

o 1 barn = 10%* cm?
Impinging beam of

monochromatic Ge,Z=32, hw =10 keV
photons, flux @, photo =4 x 103 barn
®,=photons/(s cm?) =2 x 102 barn
=1 x 10! barn

|neI



Cross section & linear attenuation coefficient

x ¢ Single scattering
' approximation: the
number of particles

( 0 ( O created by the interaction
is o number of atoms
involved

 The number of particles

A homogeneous sample created by a slab of

composed by identical atoms  thickness dx at position x

with density p (atoms/cm?) in the full solid angle is

dN = @ o dn

=@ g pA dx

=1 opdx

D, D
dx



Cross section & linear attenuation coefficient

e dN =1o0p dx

* Single particle approximation:
an impinging photon can

create only one particle.
Therefore

& dN = —dlI
Dy g dl = —1 op dx

dx * This is the same relation
which defines the linear
attenuation coefficient, thus

A homogeneous sample
composed by identical atoms
with density p

u=op




Cross section & linear attenuation coefficient

X

dx

If the sample is composed of
different atoms with densities p;
and cross sections g; then

H = zpiai
i

Cross sections are also expressed
as mass attenuation coefficients,
expressed as cm?/g, so that

u(em™1)
= p(g/cm>) o(cm?/g)



Cross section of various processes

Cu Z=29

Photoelectric absorption
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Absorption coefficient (cm™?)
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NB order of magnitude
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Elastic scattering from 1 free electron
(Thomson)

 Thomson scattering = coherent scattering

* The scattered electric field is (linear polarization
case)

ei(kr—wt)
E(7, t) = —Eyry < " ) sin 6

) / AN

= ~2.82%x1071° izati
To dmegmc? m Angle between the polarization
vector and the
“Thomson scattering length” scattered wave vector

or “classical electron radius”



The exchanged wave vector

« G=k'—k
* For elastic scattering ‘l?‘ = ‘E‘ = k and
4T
q = 7811’1 v
k ) k g
/f\’ q 20\
k k
General case Elastic scattering




Elastic scattering from 1 free electron
(Thomson)

 The differential cross section is

Polarization vectors of the
incident and scattered waves




Elastic scattering from 1 free electron

(Thomson)
 The angle integrated (total) cross section is
o= 8?nr02

 NB:itisindependent of energy




Elastic scattering from one atom

* For one atom

ei(kr—a)t)
E(F,t) — _Eoro( - ) f(Z,H) Sin9

* f(Z,80) is the «atomic form factor» or «scattering
amplitude»; no physical dimensions



Elastic scattering from one atom

do _ dOelectron 2
 The differential cross section go~ 40 £ (Z,0)]

35

30 |

* fdepends quasi
linearly on Z .
e f(0=0)=Z T sl

10 |

25}

0 0,5 1 1,5
Sin(e)/n




X-ray diffraction

e Elastic X-ray scattering is at the base of X-ray
scattering (XRD), a class of methods which are the
premiere experimental methods to determine the
atomic structure of condensed matter

» Measure the intensity of x-ray beams scattered by a sample
as a function of their deviation




Inelastic scattering

* The most common inelastic scattering mechanism
for X-rays is the Compon effect (= “incoherent
scattering”)

AL = 2mA.(1 — cos B),

h
A, = — = 3.86 x 107m, |Reduced Compton
wavelength
_Ameh? 53k S
G =——3 =V “ T dmeghc — 137
. st
Rad_IUS of the Bohr 1 Fine structure constant
orbit for H

. e? dmegh® S A 2
¢ \dmeyghc /\ me? Bl 0= 4meghc ) \mc = Hhe = @740



Compton cross section

* The Klein Nishina formula

A A,+(w’—w)2

!
!

4w’ w




Thomson and Compton scattering
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Photoelectric absorption

* A photon is absorbed

and gives its energy to an

electron.

e The electron makes a
transition to

o A bound state (excitation)
or

o An unbound state

E o

2p
2 hw

1s

(ionization): a
photoelectron is created

Energetics of photoelectric absorption
in an atom (ionization)




Photoelectric absorption in solids

* |n solids valence electrons Conduction

form bands E _‘—/ band
o Insulators and semiconductors: 0 T Vacuum

valence and conduction bands

level
o metals: conduction band Valence
* The «vacuum level» is the least band
energy an electron can have to
leave the solid (with K.E. = 0) ’P oo
o Often taken as reference level 2

E- 1s
* At sufficiently high energies

the photoelectron can be
considered «free»: it has only
kinetic energy



Conservation of energy

Conduction
* Inthe one electron ET o band
approximation for a transition T

0 Vacuum
from a core level: level

Valence
band
Initial state energy
= hw+ E; (E; <0) 2p
Final state energy = K 2 hw
K =how+ EC EC 1s

E. = —Ep (binding energy)
K — h(,() — EB



Absorption coefficient: energy dependence

L, L,, L, edges

:

T T I T 11
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Mass Absorption Coefficient [émg ]
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1 10 100
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Mass absorption cogfficient nfl.anrhm{um (£=37} versus energy of incident photons spht in 1ifs components.

Absorption edges




Z dependence of absorption edges

K-edge

£
I

B
I

Enemy of Absorption Edges [ keV ]
& = =

k=
T

0 L s
P

Energy of photoelectvic absorption edges versus atomic number of the elements.

AN
atomic number £

The atomic
number
determines the
energy of the
absorption edge
The observation
of an edge at a
given energy
indicates the
presence of the
corresponding
element




Photoemission and X-ray absorption spectroscopy

* Photoelectric absorption is at the base of
» Photoemission spectroscopy (PES, UPS, XPS), the premiere
experimental method to determine electronic structure
o measure the spectrum of electrons emitted from a sample
» X-ray absorption spectroscopy (XAS, XAFS), the premiere experimental
method to determine local atomic and electronic structure with
chemical sensitivity

o measure the photon energy dependence of the fine structure of
the attenuation coefficient

! SiZp- hv130eV

l _ Si(100)
Si?p
e = 130 o Oxidized in O,
Ge | i
S 1
= ! |
-1
1 :
11 11.5 12
Photon energy (keV)

Inital-S1ate Energy (e relatve 1o E)



Photoelectric absorption: de-excitation

x‘n
- ks
s ™ i At
i ’_.:- ; '_.:- -\._H
. l - - ; u » KLL Auger
.. ! ¢ . \ ' electron
! ! ~ = \ \

‘ f f @ .} :.' ; ST S > BV S
|l -, .y L III' |l II-‘_ L ey P L l.'.
RN, A,
",‘ T - M \H e M
. . \11 ) o
Emission of “characteristic” or Emission of
o V44 V24
“fluorescence” X-rays, Auger” electrons
also known as “emission lines” K =2E,-E




Probability for the two processes
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Nomenclature for X-ray emission lines

niel | Absorption edges
ﬂ g 7 N7 472 for copper (£ = 29):
E Eﬁ N N-i 4dy;2
41012 N, 4s En,, aps=7.7 €V
M,

3 2 b2 3 M-5 3['5{2
J[1]321 M M3 3pas By ans =79€V
3[o| 12 My S

M'l a5 EM1.ED‘E =123 eV

Lo, Loy, Lp,
2(1|aem L s 2paz  Ep ans =933V
2112 L L L: 2pypm E:j.ans =952 eV
21012 L, 2s Ei, aps = 1,097 eV
Kg, Kp, I"i2~|.-3
I.{"'3‘[1 H{‘Q

1|0 k +—1F ' d . Kis Ex aps =8.979 eV

(1.381A)
CuKg, =8,048 eV (1.541A)  Culg =930eV
Cu Ky, =8,028 eV (1.544A)  Culy,=930eV
Cu Kp, = 8,905 eV Culg, =950V




TABLE B.2. Photon energies, in electron volts, of principal K and L shell emission | ¢

Energy of emission lines

Element Koy Ka;z K3, Lo, Lo, L3,
3L 543
4 Be 108.5
SB 1833
6C 277
7N 3924
80 5249
9F 676.8
10 Ne 848.6 848.6
11 Na 1,040.98 1,040.98 1,071.1
12 Mg 1.253.60 1,253.60 1,302.2
13 Al 1.486.70 1,486.27 1,557.45
14 Si 1,739.98 1,739.38 1,835.94
15P 20137 20127 2,139.1
168 2,307.84 2,306.64 2,464.04
17 Cl 2.622.39 2,620.78 28156
18 Ar 2,957.70 2,955.63 3,190.5
19K 33138 313111 31,5806
20Ca 369168 3,688.09 40127 3413 3413 1349
21 Sc¢ 40906 4,086.1 4.460.5 3954 3954 3996
2T 451084 4,504.86 4.931.81 4522 4522 458.4
23V 4.952.20 4,944 64 5,427.29 511.3 5113 5192
24 Cr 541472 5,405.509 5,946.71 5728 5728 582.8
25 Mn 5,898.75 5,887.65 6,490.45 6374 6374 648.8
26 Fe 6.403.84 6,390.84 7.057.98 705.0 705.0 718.5
27 Co 6,930.32 6,915.30 7,649,473 776.2 776.2 791.4
28 Ni 747815 7.460.89 8,264.66 8515 8515 2638.8
29 Cu 804778 8,027.83 8,905.29 9297 9297 949 8
30Zn 8.638.86 8.615.78 95720 1.011.7 10107 1.034.7

e Measurement of the

Energy depends on Z

energy and intensity
of x-ray emission
lines is at the basis of
many “analytical”
techniques which
measure the
presence and
concentration of
elements in a sample



Auger electrons

e Nomenclature
o (Hole)(1st e7)(2Md e7)

0 500 1000 1500 2000 25003000

sof - S i * The energy depends on Z

o’ ! _._.::f;-}-ff..’-f-i'-“" #3 ¢ Measurement of the

rof 3 G PN E energy and intensity of
oo, oo §;m Auger electrons = “Auger
P - Electron Spectroscopy”,
5 ks e an analytic technique
E““‘ 5 % which measures the
25 1] presence and

of I concentration of

o L i elements on the surface

e , . of a sample

o500 1000 1500 2000 28500 3000
Electron energy (eV)



Relationship between two approaches

 Two approaches to describe the interaction
between x-rays and matter

— «Macroscopic»: by means of the dielectric function
which describes the overall response

— «Microscopic»: by means of interactions between
photons and atoms

 What is the relation between these approaches?

* |tis possible to derive a simple relation between
the index of refraction and the atomic form factor



Relation between n and f

* For a sample composed of identical atoms with
form factor f and density p

an()pf(w) q = O)

n(w)—1= 2

* n(w) has a real and immaginary part: also
f(w)!
— Real part: dispersion
— Immaginary part: attenuation



«Anomalous" corrections to the form factor

* It is common to separate the dependence on g
and w: (G, w) = f°(@) + f'(w) — if"(w)
> 2(q): atomic scattering far from resonance
frequencies / absorption edges

»f'(w): correction to dispersive part, important near
resonance frequencies

»f""(w): correction to attenuation part, important
near resonance frequencies



The total cross section

 The total cross section determines the
attenuation, o7 (w) = K@) _2en2()

p cp
* Since n,(w) = Zmopsz(“"q=0)
ATITy )
or(w) = 7;0 f"(w,q =0)

one form of the «optical theorem», which links
the total cross section to the imaginary part of
the forward scattering amplitude



Interaction between EM radiation
and hydrogen-like atoms: semiclassical theory
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Introduction

* Semi-classical theory of the interaction between
radiation and hydrogen — like atoms.

* Semi-classical since
— Radiation is treated as wave
— Atom is treated with quantum mechanics

* This approach is adequate since it can describe
scattering and stimulated absorption and
emission

— |t cannot describe spontaneous emission

e Full guantum treatment requires quantization of
EM field: more formal

* All phenomena occurring in hydrogen — like
atoms are present in many electron ones

_ L




A monochromatic photon beam

* Even within the semi-classical approach we
will find that absorption and emission of
energy between the beam and atoms occurs
in quanta of magnitude Aw, that is photons

* Even scattering will be describe in terms of
photons.

* Therefore: extend definitions of intensity and
flux in particle — like terms.

_ "



Monochromatic radiation beam: definitions

B

(Number of photons which cross a surface perpendicular to k )/
(unit time)

| : Intensity = (Energy crossing the surface) / (unit time)

@ : Photon flux =
(Number of photons crossing the surface) / (unit time x area)

F: Energy flux= (Energy crossing the surface) / (unit time x area)

N
I = Nhw F=Zha) F=® ho



Interaction between a wave and an atom

e The interaction is treated with time dependent
pertubation theory

* The unperturbed atom’s Hamiltonian is H,

* The pertubation is an EM wave and the time
dependent interaction Hamiltonian is H'(t)

* The EM wave has a harmonic dependence on
time, thus it is expressed by an Hermitian operator
of the type

H'(t) = He'®t + HTe~iwt

in which H is an operator which does not depend
on time
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Time dependent perturbation theory
 The unpertubed atom has eigenstates labelled «a»
and «b» with energies E,° and E;,°
» Often called the «initial» and «final» states
* |t can be demonstrated that the transition probability

is maximized for two «resonant» conditions deriving
from different terms in H'(t)
b

Hte~wwt [ hw = E,° — E,°

a
felwt J hw =E,° —E,°
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Time dependent perturbation theory

% [t g-icot Stimulated absorption
b A photon of energy Aw
%S‘[ hw =E,° —E,° is absorbed by the atom
e The atom makes a

transition fromato b

Stimulated emission

§’ i picot * A photon of energy hw
a ¢ is emitted from the

l $ hw = E,° —E,°  atom
b e The atom makes a
transition fromato b
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Fermi’s golden rule: transition to discrete states

* For the case of absorption it can be demonstrated that, to
first order in the pertubation, the transition probability per
unit time for transitions between discrete levels a and b is

21T | ~
Wha = =BT pa| 8 (E," = Eo — o)

« AT, = (b|1'-7+|a) is the matrix element of the perturbation

* The Dirac § function is an expression of the conservation of
energy

» Apparently unphysical: the probability is always 0 except at resonance
in which case it diverges. This will be resolved by introducing the
concept of lifetime of the eigenstates




Fermi’s golden rule: transition to continuum states

* For absorption with final states b in the continuum
it can be shown that

270 | -
Wpa = W‘HTDa‘Zp(EbO)

with the condition that E,,° = E,° + Aw

* p(E) is the density of states, such that the number
of states between E and E + dF is

dN = p(E) dE
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The classical EM field

e The EM field is described in terms of the vector and
scalar potentials A(#, t) and ¢ (7, t)

. AR,
(.0 = (i, t) ~ s

(#t) =V x AP b). Magnetic induction field

Electric field
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A plane monochromatic EM wave

A, £) = £|A(w)e!@FD) 4 A% (w)e @D
DA%, t)

ot

B(#t) =~ (k x E)

= i(k X é) [—A(w)ei(“)t_ﬁ’?) + A*(a))e_i(“)t_%"ﬁ)]

— iwé [_A(w)ei(wt—E-F) i A*(w)e—i(wt—E-F)]

* The polarization is defined by &.
It can be linear or circular
* A(w) determines the amplitude and

intensity of the wave B

» Actually it is real, but we keep the complex
notation for consistency

_ [

| w51
=

B
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Interaction Hamiltonian

* The unpertubed Hamiltonian for a H — like atom with
nucleus of charge Z is

(~in?)’ - Zé?
2m (4rey)r

HOZ

* It can be proved that the total Hamiltonian, including the
interaction term is

h2[2 Ze? N e? i
2m  (4mey)r Nt 2m

_ ¥
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Interaction Hamiltonian

h2[2 Ze? we x5l e? 72
2m  (4meg)n l

H = —
m 2m

* Two pertubation terms: one linear and the other quadratic in A
* Consider now the linear term .
H =—ih—A-V
m
* Since /T(F, t) =§& [A(a))ei(“’t‘k'ﬂ + A(w)e‘i(wt‘k'F)]
it is precisely of the form
H'(t) = He'wt + HTe @t
considered in time dependent pertubation theory
> H = 2A(w)e kT HT = sA(w)ei* ™



Interaction Hamiltonian

e > o
H =—ih—A-V
m

H'(t) = He'wt + HTe 0t
* This term describes stimulated absorption and emission
processes. Let’s concentrate on absorption, also aptly called
photoelectric absorption since in the atom an electron makes
a transition induced by the absorption of a photon.

* Absorption is due to HTe™'®t, emission to He'®t
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Cross section for photoelectric absorption

* Use Fermi’s golden rule. Consider transitions
between discrete bound states a and b.

21 |
Wy = % |1L11‘ba|25(15bO —E.° — hw)

~ he -
HY = —i (—) EA(w)e*T .7
m

_27‘[ 2

hzez .7 > —>
Wha == ( — )AZ(w) [le 7 - Flipy)

5 (B - EQ - ho)



Dipole approximation

e Consider the matrix element

Mpg = (Pplet*Té - V)i,

 An important approximation can be performed in most
spectral ranges. Re-write the matrix element as an integral
in real space:

Myg = f B3 p, () e 8. 7, (7)
vV

B #



Dipole approximation

© Myg = [, & " (D) e & T o (P)

* The spatial extent of the wavefunctions is at most of
the order of the typical atomic size d,~ 1 A: this
determines the maximum effective value of 7 in the
integral

. 2
e The modulus of the wavevectoris k = 7”

* Therefore if the wavelength is such that
21td,

A
we can make the approximation that

K1

elk-r -1

_ "




Dipole approximation

* For valence initial states the dipole approximation etk™ =1 s

valid up to the UV.
* For core level initial states of not too light atoms the dipole

approximation continues to be valid.
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The cross section in the dipole approx.

0 =41 ho a [(Pplé - Flpa) 26 (Ef” — B — ho)

e Clearly, dimensions = L?

* The order of magnitude is determined by the
dipole matrix element, an effective “area”
roughly of the order of ay?, depending on the
overlap of initial and final wavefunctions

* The Dirac 9 function is an expression of the
conservation of energy

* The apparent unphysical divergence will be
solved introducing the concept of lifetime of
states
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Selection rules

e Using the properties of the spherical harmonics it
can be shown that the selection rule on £ is

At = +1

* The selection rule on m depends on the state of
polarization of the radiation
» For linealy polarized radiation Am =0
» For circularly polarized radiation| Am = +1
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Selection rules

Conservation of angular momentum
AP = +1 &
(modulus)
Conservation of angular momentum
Am = +1 . ;
(quantization axis component)
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Selection rules

E A
AP = +1
Am{»=+0, lin 0 £=0 £=1 £=2
= 41, circ
n=3\| —~« /
n=2\— e
n=1|—
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Lifetime and lineshape

* We have implicitly assumed that all atomic eigenstates have
infinite lifetime. Apart from the fundamental state (1s) this is
not true.

e All states have a finite lifetime due to

» Spontaneous emission, also present for isolated atoms

» Collisions between atoms, which induce electron transitions, present
in gases at non negligible pressure

* If Ny atoms are in a given state at t = 0, their number decays
exponentially as

t
N(t) — Noe_?

 Forthe H atom, the lifetimes 7 of electronic states are

39




Lifetime and lineshape

» Afinite lifetime implies a spectral broadening
» Transitions do not occur at a single photon energy
Nwpq = EbO — an
» Transitions occur in a band centered around
hwy, with a broadening I' which can be
estimated from the Heisenberg uncertainty
principle
* From the energy — time Heisenberg uncertainty

principle, interpret T as uncertainty in time,
thus

I' = —
T
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Lifetime and lineshape

" |t can be proved that this spectral broadening results in a
Lorentzian lineshape as a function of energy

.* For a transition between states with lifetimes 7, and 7, the
Lorentzian half width at half maximum (HWHM) is

1 1
r=h( + )
Tq Tp

* The energy dependence of the cross section, the lineshape, is
proportional to

l"2
h?(wp, — w)? +T'?

L(w) =

* This spectral broadening resolves the apparently unphysical
result that the cross section is proportional to a 6 function.



Lifetime and lineshape
FZ
h?(wpq — w)? + I'?

L(w) =
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Scattering of radiation

. A /’ EI
ho k /' @
>

* From the particle point of view scattering is a 2
photon process: a photon is absorbed (destroyed) and
another is emitted (created).

* The scattered photon in general has a different energy
and different wave vector (modulus and/or direction)

* w' = w:elasticscattering * ' # w :inelastic scattering
» In general: Raleigh » In general: Raman
» For a free electron: Thomson » For a free electron: Compton (o' < @)




Scattering cross section

e Recall that the interaction Hamiltonian is

g8 e’

= E p + %A

with

/T(f’, t) =¢& [A(w)ei(wt_E’F) + A(a))e‘i(“’t‘%"j)]
—i(wt—k-7)

e Absorption is due to A(w)e

 Emission is due to A(w)ei(wt—ﬁ'f)



Scattering cross section

e Scattering is a 2 photon process which is due to
2 5
» The quadratic term Ze—mAz, in first order pertubation theory

(Fermi’s golden rule)

» The linear term %/T - p , treated as a second order

pertubation
* Qualitatively, it can be justified by interpreting each A
term as involving 1 photon (either absorbed or

emitted).



X-ray scattering cross section

 Term which describes scattering of X-rays (high energy
. .
limit) is ze—mA2 using 1st order pertubation theory.

e Define
G=k —k

the exchanged wavevector.

=
=y

E/
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Fermi’s GD for continuum final states
* Fermi’s GD for final states in the continuum is
2T . 2
Wpa = T‘HTba‘ p(EbO)
Ebo — an + h(l)

* The density of states p(E) is the number of states
of energy between E and E + dE':
dN = p(E) dE
with the specification of the dispersion relation
applicable for photons
w = ck
E =hw = hck



Scattering geometry

* We will discuss the cross section for scattering in which
the scattered photon has direction defined by the

wave vector k' within an infinitesimal solid angle df)
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X-ray scattering cross section
* |t can be proved that the differential cross section is

d e* w'’ o
° ( )(é‘.é\r)zkble—lq-rla)lz

da 16m2eim2ct \ w

w' s 12
=13 (L) -7l ole 410

82

=~ 2.82 x 1071 m, the «classical electron radius» or

To = ATEgMC?
0
«Thomson scattering length»
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Scattering of radiation: general case

* In the general case (not only X-rays) one has to use both terms
of the interaction Hamiltonian

Linear term: second order pertubation theory
Quadratic term: first order pertubation theory



Scattering of radiation: general case

* |t can be demonstrated that in the dipole approximation the
differential cross section is the Kramers — Heisenberg formula

do _ r2oww'”
do °

mz: (&~ 7_zbn)(é\ . 7_zna) " (€- an)(é\’ ' Fna)
(EY —E) —hw) (E) —E2 + hw")

n

with the condition that
E0 + hw = E) + ho'

and the sum is over all atomic states n.
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Scattering of radiation: general case

A - A > A > A - 2
. d_O' — TzwwIS mz (Sl'rbn)(g'rna) (E'Tbn)(gl'rna)
aa 0 " (E9-ES-hw) = (EY-EQ+hw')

* A «picture» of this equation

» Scattering is due to the sum of «virtual» transitions to

intermediate states.
» Conservation of energy is valid only globally, not for
transitions to intermediate «virtual» states

_ 1




