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Dielectric response

• General problem: how does condensed matter
respond to the application of an external
pertubation?

• The EM wave is the external pertubation

• First approach: 
macroscopic / collective

• Second approach: 
microscopic /atomic / particle



Elementary phenomenology

• An electric field applied to a dielectric (no free 
charges) polarization

– By distortion

– By orientation



Dielectric response

• The applied field will in general have a space

and time dependence 𝐸 Ԧ𝑟, 𝑡 which will affect
the response



Polarization and susceptibility
• Assume the response of matter to the applied field

is linear
o OK for not too high fields

o not OK for high power visible, EUV and X-ray lasers

• Apply linear response theory

• The electric dipole moment per unit volume is the 
polarization vector 𝑃

• Within the linear approximation introduce the 
electric susceptibility 𝜒

𝑃 = 𝜀0𝜒𝐸



Polarization and susceptibility

• Susceptibility is in general a tensor quantity; 
for simplicity here consider it a scalar. 

• We will study the scalar relations in the 
frequency domain

𝑃 𝜔 = 𝜀0𝜒 𝜔 𝐸 𝜔

• The dielectric response of matter determines
𝜒 𝜔



Dielectric displacement

• The dielectric displacement vector is defined as

𝐷 = 𝜀0𝐸 + 𝑃

• The direct proportionality between 𝐷 and 𝐸 is
written as

𝐷 = 𝜀0𝜀 𝐸
in which 𝜀 is the «dielectric constant», better
called permittivity or dielectric function

• Clearly
𝜀 = 1 + 𝜒



Dielectric displacement

• We will study dynamics (time dependent
properties)

• Susceptibility and dielectric function are «linear 
response functions» 

o Independent of the external field

o Describe system properties



The dielectric function
• 𝐷 𝜔 = 𝜀0𝜀 𝜔 𝐸 𝜔

o 𝜀 𝜔 has a real and imaginary part: 𝜀 𝜔 = 𝜀1 𝜔 + 𝑖𝜀2 𝜔

• The 𝜔 dependence of 𝜀 is determined by 
o The spectral range

o The corresponding type of excitations possible

o The specific properties of the system

Spectral range System Excitation processes

Micro - waves Molecules, free or in solution Molecular rotations

Infra - red Molecules, free or in solution Molecular vibrations

Infra - red Solids Phonons

Visibile – UV Atoms, molecules, solids
Valence electron 

transitions

X - rays Atoms, molecules, solids
Core level electron 

transitions



Dispersion and attenuation

• The dielectric function determines dispersion
and attenuation of an EM wave propagating in a 
polarizable medium

o a not too rarefied gas, a liquid, a solid or any other
state of aggregation (liquid crystal, plasma …)

• In vacuum the dispersion relation for EM waves
is

𝜔 = 𝑐𝑘

𝑐 is the speed of light in vacuo.



Dispersion and attenuation
• In the medium the dispersion relation is modified by the 

presence of the index of refraction 𝑛 𝜔 :

𝜔 =
𝑐

𝑛 𝜔
𝑘

• The index of refraction is

𝑛 𝜔 = 𝜀 𝜔 𝜇 𝜔

• Neglecting magnetic effects, 𝜇 𝜔 = 1

𝑛 𝜔 = 𝜀 𝜔

• 𝑛 𝜔 and 𝜀 𝜔 are macroscopic quantities which describe the 
interaction between the wave and the medium



Dispersion and attenuation
• Consider a plane wave propagating along x

𝐸 = 𝐸0𝑒
𝑖 𝑘𝑥−𝜔𝑡 ; 𝑘 𝜔 =

𝑛 𝜔 𝜔

𝑐
• 𝑛 𝜔 has a real and an imaginary part:

𝑛 𝜔 = 𝑛1 𝜔 + 𝑖𝑛2 𝜔

• Therefore, also the wave number has a real and 
imaginary part

𝑘 𝜔 =
𝑛1 𝜔 + 𝑖𝑛2 𝜔 𝜔

𝑐
= 𝑘1 𝜔 + 𝑖𝑘2 𝜔

𝑘1 𝜔 = 𝑛1 𝜔 𝜔
𝑐 , 𝑘2 𝜔 = 𝑛2 𝜔 𝜔

𝑐



Dispersion and attenuation

• 𝑘 𝜔 =
𝑛1 𝜔 +𝑖𝑛2 𝜔 𝜔

𝑐
= 𝑘1 𝜔 + 𝑖𝑘2 𝜔

𝑘1 𝜔 = 𝑛1 𝜔 𝜔
𝑐 , 𝑘2 𝜔 = 𝑛2 𝜔 𝜔

𝑐

• The effect on the space propagation is

𝑒𝑖𝑘𝑥 = 𝑒𝑖𝑘1 𝜔 𝑥 𝑒−𝑘2 𝜔 𝑥

• The space – time dependence of the wave is thus

𝐸 = 𝐸0𝑒
𝑖 𝑘1 𝜔 𝑥−𝜔𝑡 𝑒−𝑘2 𝜔 𝑥

Propagation term Attenuation term



Dispersion and attenuation
• 𝐸 = 𝐸0𝑒

𝑖 𝑘1 𝜔 𝑥−𝜔𝑡 𝑒−𝑘2 𝜔 𝑥

• 𝑘1 𝜔 = 𝜔𝑛1 𝜔

𝑐
is the modified wave vector

o the phase velocity of the wave is 𝑣 = 𝑐

𝑛1 𝜔

• 𝑘2 𝜔 = 𝜔𝑛2 𝜔

𝑐
determines the attenuation of 

the wave as it traverses the medium

• 𝑛1 𝜔 : dispersion (modifies the speed of 
propagation)

o If the wave crosses the interface between two media 
it will change direction (refraction)

• 𝑛2 𝜔 : attenuation



The linear attenuation coefficient
• 𝑘2 𝜔 = 𝜔𝑛2 𝜔

𝑐
: attenuation of the amplitude

• Since 𝐼 ∝ 𝐸 2 the attenuation coefficient of the 
intensity is

𝜇 = 2𝜔𝑛2 𝜔
𝑐

• If the total thickness traversed is 𝐿 the trasmitted
intensity 𝐼𝑇 is related to the incident one 𝐼0 by

𝐼𝑇 = 𝐼0𝑒
−𝜇𝐿

• For an infinitesimal thickness

𝑑𝐼

𝐼
= −𝜇 𝑑𝑥

𝐼0 𝐼𝑇

𝑑𝑥

𝑥𝐿



Relation between e (w) e n(w)

• 𝑛1 𝜔 + 𝑖𝑛2 𝜔 = 𝜀1 𝜔 + 𝑖𝜀2 𝜔

• Therefore:

o 𝜀1 = 𝑛1
2 − 𝑛2

2 , 𝜀2 = 2𝑛1𝑛2

o 𝑛1 =
𝜀1+ 𝜀

2
, 𝑛2 =

−𝜀1+ 𝜀

2



𝛆(𝝎) and 𝒏 𝝎 – weak interaction

• With 𝜀 = 1 + 𝜀′ + 𝑖𝜀2 if 𝜀′ and 𝜀2 ≪ 1: 
weak interaction limit (X-ray range) 

• In this limit

𝑛 = 1 + 𝜀′ + 𝑖𝜀2 ≅ 1 + 1
2
𝜀′ + 𝑖1

2
𝜀2

• By convention, in the weak interaction limit the index of 
refraction is written as

𝑛 𝜔 = 1 − 𝛿 𝜔 + 𝑖𝛽 𝜔

𝛿 = −1
2𝜀

′, 𝛽 = 1
2𝜀2

𝛿 and 𝛽 ≪ 1



Typical values of 𝜹 and 𝜷 (17.5 keV)

• 𝛿: : 10-6 (plexiglas) → 10-5 (Au)
• 𝛽: 6  10-10 (plexiglas) → 1.2  10-6 (Au)
• 𝑛1 ≲ 1

o Refraction is very weak
o Difficult (but not impossible) to construct

«x-ray lens»
o Total external reflection is possible at very small 

grazing angles



Model dielectric functions

• Study two simple models for e (w) to illustrate 
general features of the dielectric response of 
matter

– Static (w = 0) distortion polarization

– Damped harmonic oscillator



Static distortion polarization

• A static electric field applied to a classical molecule
consisting of point charges: nuclei and electrons

• N charges 𝑞𝑗 with mass 𝑚𝑗, elastically bound to their

equilibrium position by a restoring force

−𝑚𝑗𝜔𝑗
2𝑟𝑗

in which 𝑟𝑗 is the displacement of the 𝑗–th charge in the 

direction of the electric field

▪ j = 1, … N

▪ 𝜔𝑗is the resonance frequency of the 𝑗–th charge



Static distortion polarization
• The force acting on each charge is 𝑞𝑗𝐸

• At equilibrium the displacement of each
charge is

𝑟𝑗
𝑒 =

𝑞𝑗
𝑚𝑗𝜔𝑗

2 𝐸

• The induced dipole moment is 𝑝𝑗 =
𝑞𝑗
2

𝑚𝑗𝜔𝑗
2 𝐸

• The total induced dipole moment is

෍

𝑗=1

𝑁

𝑞𝑗
2

𝑚𝑗𝜔𝑗
2 𝐸



Static distortion polarization

• If the (number) density of molecules is r the 
static permittivity is

ε 𝜔 = 0 = 1 + 𝜌

𝜀0
σ𝑗=1
𝑁 𝑞𝑗

2

𝑚𝑗𝜔𝑗
2

o Always > 1

o Reasonable behaviour as a function of masses, 
density and resonance frequency

➢increases with 𝜌

➢decreases with 𝑚𝑗 and 𝜔𝑗



Damped harmonic oscillator: approximations
• In describing the effect of an EM on a collection of charges

which simulate the dielectric response of matter we make the 
following important approximations

1) Electric dipole approximation

o l » displacement of charges (neglect spatial variation of field): validity
depends on spectral range

2) Neglect motion of nuclei, consider only the contribution of 
electrons
o Justified in view of the great difference in mass

3) Neglect effect of force 𝑞 Ԧ𝑣 × 𝐵 due to magnetic field

o Justified since it is weaker than 𝑞𝐸

4) Neglect «radiation damping» due to emission of radiation
o An accelerated charge will always emit radiation: it will thus lose energy

o This effect is often considered as due to a «self – force». 



Damped harmonic oscillator
• First consider a single electron

o equilibrium position in the origin, 
displacement 𝑟 at time 𝑡

o charge −𝑒 and mass 𝑚
o elastically bound to its equilibrium position by a 

restoring force

−𝑚𝜔0
2𝑟

➢𝜔0 is the resonant frequency (frequency of unforced
oscillations)

o subject to a dissipative viscous force

−𝑚𝛾
𝑑𝑟

𝑑𝑡



Damped harmonic oscillator

• The external electric field is written as
𝐸0𝑒

−𝑖𝜔𝑡

• The classical equation of motion is

−𝑒𝐸0𝑒
−𝑖𝜔𝑡 −𝑚𝜔0

2𝑟 − 𝑚𝛾
𝑑𝑟

𝑑𝑡
= 𝑚

𝑑2𝑟

𝑑𝑡2



Damped harmonic oscillator
• We seek a solution of the type 𝑟 𝑡 =
𝑅 𝜔 𝑒−𝑖𝜔𝑡

• We easily find

𝑅 𝜔 =
𝑒

𝑚 𝜔2 −𝜔0
2 + 𝑖𝛾𝜔

𝐸0

• The induced dipole moment is

𝑝 𝜔 𝑒−𝑖𝜔𝑡 =
𝑒2

𝑚 𝜔0
2−𝜔2−𝑖𝛾𝜔

𝐸0𝑒
−𝑖𝜔𝑡



An atom as an ensemble of oscillators

• Model an atom as composed of Z electrons
arranged in M shells with equal characteristic
𝜔𝑗 , 𝛾𝑗

• Each shell contains 𝑓𝑗 electrons, with

෍

𝑗=1

𝑀

𝑓𝑗 = 𝑍



An atom as an ensemble of oscillators

• Following the single electron result, the 
atomic dipole moment induced by the 
external field is

𝑝 𝜔 = 𝑒2

𝑚
෍

𝑗=1

𝑀
𝑓𝑗

𝜔𝑗
2 −𝜔2 − 𝑖𝛾𝑗𝜔

𝐸0

• 𝑓𝑗 is known as the «oscillator strength»: it

determines the contribution of the 𝑗–th shell
to the dipole moment



A medium as an ensemble of polarizable atoms

• If the (number) density of identical atoms is r , we 
find

𝜀 𝜔 = 1 + 𝜌𝑒2

𝜀0𝑚
෍

𝑗=1

𝑀
𝑓𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔

• 𝜀1 𝜔 = 1 + 𝜌𝑒2

𝜀0𝑚
σ𝑗=1
𝑀 𝑓𝑗 𝜔𝑗

2−𝜔2

𝜔𝑗
2−𝜔2 2

+ 𝛾𝑗𝜔
2

• 𝜀2 𝜔 = 𝜌𝑒2

𝜀0𝑚
σ𝑗=1
𝑀 𝑓𝑗𝛾𝑗𝜔

𝜔𝑗
2−𝜔2 2

+ 𝛾𝑗𝜔
2

• Kramers – Heisenberg or electric dipole dielectric
function



• A simple model which reproduces well the response of 
polarizable media in many frequency ranges

e
1
(w)=Re[e

r
(w)]

e
2
(w)=Im[e

r
(w)]

ww
j

Full width at half maximum
(FWHM) = gj

1

0

Dispersion

Attenuation

«Anomalous dispersion»

Near resonant behaviour

«Resonant absorption»



The dielectric
response of 

liquid water as a 
function of 
frequency

𝑛1 𝜔

𝜇 𝜔

= 2𝜔
𝑐
𝑛2 𝜔

Jackson, Classical Electrodynamics
© Wiley



Interaction: atomic approach (IR to vis/UV)

Incident beam
Intensity I0 (photons/s)

Photon energy ℏ𝜔
Wave vector  

Transmitted beam
Intensity IT < I0 

Energy ℏ𝜔
Wave vector

Absorption processes
• IR: vibrations/phonons
• VIS/UV: electronic transitions

Scattering

Inelastic
ℏ𝜔′ ≠ ℏ𝜔

Elastic
ℏ𝜔′ = ℏ𝜔



Interaction: atomic approach (UV to X-rays)

Incident beam
Intensity I0 (photons/s)

Photon energy ℏ𝜔
Wave vector  

Transmitted beam
Intensity IT < I0 

Energy ℏ𝜔
Wave vector

Photoelectric absorption
Electrons
𝐾 = ℏ𝜔 − 𝐸𝐵

Momentum

Scattering

Inelastic
ℏ𝜔′ ≠ ℏ𝜔

Elastic
ℏ𝜔′ = ℏ𝜔



Cross section

𝑑𝑁 = Φ0𝑑𝜎 = Φ0

𝑑𝜎

𝑑Ω
𝑑Ω

𝜎 = න

4𝜋

𝑑𝜎

𝑑Ω
𝑑Ω

Impinging beam of 
monochromatic
photons, flux Φ0

Φ0=photons/(s cm2)

[𝜎] = cm2

1 barn = 10-24 cm2

Ge, Z = 32, ℏ𝜔 =10 keV
sphoto = 4 × 103 barn
sel = 2 × 102 barn
sinel = 1 × 101 barn

𝜙

𝜃
𝑟

𝑑𝜙

𝑑𝜃
𝑑Ω =
sin 𝜃 𝑑𝜃 𝑑𝜙

Φ0

• A single atom in the origin
• Interaction produces 𝑑𝑁 particles per 

unit time in the solid angle 𝑑Ω



Cross section & linear attenuation coefficient

F0
FT

• Single scattering
approximation: the 
number of particles
created by the interaction
is ∝ number of atoms
involved

• The number of particles
created by a slab of 
thickness 𝑑𝑥 at position 𝑥
in the full solid angle is

𝑑𝑁 = 𝛷 𝜎 𝑑𝑛
= 𝛷 𝜎 𝜌𝐴 𝑑𝑥
= 𝐼 𝜎𝜌 𝑑𝑥

𝑑𝑥

𝑥

A homogeneous sample 
composed by identical atoms
with density 𝜌 (atoms/cm3)



Cross section & linear attenuation coefficient

F0
FT

• 𝑑𝑁 = 𝐼 𝜎𝜌 𝑑𝑥
• Single particle approximation: 

an impinging photon can 
create only one particle. 
Therefore

𝑑𝑁 = −𝑑𝐼
𝑑𝐼 = −𝐼 𝜎𝜌 𝑑𝑥

• This is the same relation 
which defines the linear 
attenuation coefficient, thus

𝜇 = 𝜎𝜌

𝑑𝑥

𝑥

A homogeneous sample 
composed by identical atoms
with density 𝜌



Cross section & linear attenuation coefficient

F0
FT

• If the sample is composed of 
different atoms with densities 𝜌𝑖
and cross sections 𝜎𝑖 then

𝜇 =෍

𝑖

𝜌𝑖𝜎𝑖

• Cross sections are also expressed
as mass attenuation coefficients, 
expressed as 𝑐𝑚2/𝑔, so that

𝜇 𝑐𝑚−1

= 𝜌 Τ𝑔 𝑐𝑚3 𝜎 Τ𝑐𝑚2 𝑔

𝑑𝑥

𝑥



Cross section of various processes

102

103

104

105

106

NB order of magnitude
e.g. Cu @ 10 keV
𝜇−1 ~ 10−5 𝑐𝑚 = 10 𝜇𝑚



Elastic scattering from 1 free electron 
(Thomson)

• Thomson scattering = coherent scattering

• The scattered electric field is (linear polarization 
case)

𝑟0 =
𝑒2

4𝜋𝜀0𝑚𝑐2
≅ 2.82 × 10−15m

“Thomson scattering length” 
or “classical electron radius”

𝐸(Ԧ𝑟, 𝑡) = −𝐸0𝑟0
𝑒𝑖 𝑘𝑟−𝜔𝑡

𝑟
sin 𝜃

Angle between the polarization
vector and the

scattered wave vector



The exchanged wave vector

• Ԧ𝑞 = 𝑘′ − 𝑘

• For elastic scattering 𝑘′ = 𝑘 = 𝑘 and

𝑞 =
4𝜋

𝜆
sin 𝜃

Ԧ𝑞

𝑘

𝑘′

2𝜃Ԧ𝑞

𝑘

𝑘′

General case Elastic scattering



Elastic scattering from 1 free electron 
(Thomson)

• The differential cross section is

𝑑𝜎

𝑑Ω
= 𝑟0

2 Ƹ𝜀 ∙ Ƹ𝜀′ 2

Polarization vectors of the
incident and scattered waves



Elastic scattering from 1 free electron 
(Thomson)

• The angle integrated (total) cross section is

• NB: it is independent of energy

𝜎 =
8𝜋

3
𝑟0
2



Elastic scattering from one atom

• For one atom

• 𝑓 𝑍, 𝜃 is the «atomic form factor» or «scattering
amplitude»; no physical dimensions

𝐸 Ԧ𝑟, 𝑡 = −𝐸0𝑟0
𝑒𝑖 𝑘𝑟−𝜔𝑡

𝑟
𝑓 𝑍, 𝜃 sin 𝜃



Elastic scattering from one atom

• The differential cross section

• f depends quasi 
linearly on Z

• f (q = 0)= Z

𝑑𝜎

𝑑Ω
=
𝑑𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

𝑑Ω
𝑓(𝑍, 𝜃) 2

0

5

10

15

20

25

30

35

0 0,5 1 1,5

f

Sin(q)/l

Ge
Ca



X-ray diffraction
• Elastic X-ray scattering is at the base of X-ray

scattering (XRD), a class of methods which are the 
premiere experimental methods to determine the 
atomic structure of condensed matter

➢Measure the intensity of x-ray beams scattered by a sample 
as a function of their deviation



Inelastic scattering

Δ𝜆 = 2𝜋ƛ𝑐 1 − cos 𝜃 ,

ƛ𝑐 =
ℏ

𝑚𝑐
≅ 3.86 × 10−13m,

• The most common inelastic scattering mechanism
for X-rays is the Compon effect (= “incoherent
scattering”)

ƛ𝑐 =
𝑒2

4𝜋𝜀0ℏ𝑐

4𝜋𝜀0ℏ
2

𝑚𝑒2
= 𝛼𝑎0

𝑎0 =
4𝜋𝜀0ℏ

2

𝑚𝑒2
≅ 0.53Å

𝑟0 =
𝑒2

4𝜋𝜀0ℏ𝑐

ℏ

𝑚𝑐
= 𝛼ƛ𝑐 = 𝛼2𝑎0.

𝛼 =
𝑒2

4𝜋𝜀0ℏ𝑐
≅

1

137

Reduced Compton
wavelength

Radius of the Bohr 1st

orbit for H
Fine structure constant



Compton cross section

• The Klein Nishina formula

𝑑𝜎

𝑑Ω
= 𝑟0

2
𝜔′

𝜔
Ƹ𝜀 ∙ Ƹ𝜀′ +

𝜔′ − 𝜔

4𝜔′𝜔

2



Thomson and Compton scattering



Photoelectric absorption

• A photon is absorbed
and gives its energy to an 
electron.

• The electron makes a 
transition to

o A bound state (excitation) 
or

o An unbound state 
(ionization): a 
photoelectron is created

1s

2s

2p

ℏ𝜔

Energetics of photoelectric absorption
in an atom (ionization)

0

E



Photoelectric absorption in solids
• In solids valence electrons

form bands

o Insulators and semiconductors: 
valence and conduction bands

o metals: conduction band

• The «vacuum level» is the least
energy an electron can have to 
leave the solid (with K.E. = 0)

o Often taken as reference level

• At sufficiently high energies
the photoelectron can be 
considered «free»: it has only
kinetic energy

Valence
band

Conduction
band

Vacuum
level

ℏ𝜔

EC

0

1s

2s

2p

E



Conservation of energy

• In the one electron 
approximation for a transition
from a core level:

Initial state energy
= ℏ𝜔 + 𝐸𝐶 (𝐸𝐶 < 0)
Final state energy = 𝐾

𝐾 = ℏ𝜔 + 𝐸𝐶

𝐸𝐶 = −𝐸𝐵 (binding energy)

𝐾 = ℏ𝜔 − 𝐸𝐵

Valence
band

Conduction
band

Vacuum
level

ℏ𝜔

EC

0

1s

2s

2p

E



Absorption coefficient: energy dependence

Absorption edges

L3, L2, L1 edges

K edge



Z dependence of absorption edges

• The atomic
number
determines the 
energy of the 
absorption edge

• The observation
of an edge at a 
given energy
indicates the 
presence of the 
corresponding
element



Photoemission and X-ray absorption spectroscopy

• Photoelectric absorption is at the base of
➢ Photoemission spectroscopy (PES, UPS, XPS), the premiere 

experimental method to determine electronic structure
o measure the spectrum of electrons emitted from a sample

➢ X-ray absorption spectroscopy (XAS, XAFS), the premiere experimental
method to determine local atomic and electronic structure with 
chemical sensitivity
o measure the photon energy dependence of the fine structure of 

the attenuation coefficient

11 11.5 12

Photon energy (keV)

Ge


 (

a
.u

.)



Photoelectric absorption: de-excitation

Emission of “characteristic” or 
“fluorescence” X-rays, 

also known as “emission lines” 
ћwf=EL-EK

Emission of 
“Auger” electrons”

KA=2EL-EK



Probability for the two processes



Nomenclature for X-ray emission lines



Energy of emission lines
• Energy depends on Z

• Measurement of the 
energy and intensity 
of x-ray emission 
lines is at the basis of 
many “analytical” 
techniques which 
measure the 
presence and 
concentration of 
elements in a sample



Auger electrons
• Nomenclature

o (Hole)(1st e–)(2nd e–)

• The energy depends on Z
• Measurement of the 

energy and intensity of 
Auger electrons = “Auger 
Electron Spectroscopy”, 
an analytic technique 
which measures the 
presence and 
concentration of 
elements on the surface 
of a sample



Relationship between two approaches

• Two approaches to describe the interaction
between x-rays and matter

– «Macroscopic»: by means of the dielectric function
which describes the overall response

– «Microscopic»: by means of interactions between
photons and atoms

• What is the relation between these approaches?

• It is possible to derive a simple relation between
the index of refraction and the atomic form factor



Relation between 𝒏 and  𝒇

• For a sample composed of identical atoms with 
form factor 𝑓 and density 𝜌

𝑛 𝜔 − 1 = −
2𝜋𝑟0𝜌𝑓 𝜔, 𝑞 = 0

𝑘2

• 𝑛 𝜔 has a real and immaginary part: also
𝑓 𝜔 ! 

– Real part: dispersion

– Immaginary part: attenuation



«Anomalous" corrections to the form factor

• It is common to separate the dependence on Ԧ𝑞
and 𝜔: 𝑓 Ԧ𝑞, 𝜔 = 𝑓0 Ԧ𝑞 + 𝑓′ 𝜔 − 𝑖𝑓′′ 𝜔

➢𝑓0 Ԧ𝑞 : atomic scattering far from resonance
frequencies / absorption edges

➢𝑓′ 𝜔 : correction to dispersive part, important near
resonance frequencies

➢𝑓′′ 𝜔 : correction to attenuation part, important
near resonance frequencies



The total cross section

• The total cross section determines the 

attenuation, 𝜎𝑇 𝜔 = 𝜇 𝜔

𝜌
=
2𝜔𝑛2 𝜔

𝑐𝜌

• Since 𝑛2 𝜔 =
2𝜋𝑟0𝜌𝑓

′′ 𝜔,𝑞=0

𝑘2

𝜎𝑇 𝜔 =
4𝜋𝑟0

𝑘
𝑓′′ 𝜔, 𝑞 = 0

one form of the «optical theorem», which links
the total cross section to the imaginary part of 
the forward scattering amplitude



Interaction between EM radiation
and hydrogen-like atoms: semiclassical theory



References

• B.H. Bransden & C.J. Joachain, “Physics of 
atoms and molecules”, 2nd edition, Pearson 
Education – Prentice Hall (2003)
Chapter 4 (except 4.4), in parts
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Introduction
• Semi-classical theory of the interaction between 

radiation and hydrogen – like atoms.
• Semi-classical since 

– Radiation is treated as wave
– Atom is treated with quantum mechanics

• This approach is adequate since it can describe 
scattering and stimulated absorption and 
emission
– It cannot describe spontaneous emission

• Full quantum treatment requires quantization of 
EM field: more formal

• All phenomena occurring in hydrogen – like 
atoms are present in many electron ones

68



A monochromatic photon beam
• Even within the semi-classical approach we 

will find that absorption and emission of 
energy between the beam and atoms occurs 
in quanta of magnitude ℏ𝜔, that is photons

• Even scattering will be describe in terms of 
photons.

• Therefore: extend definitions of intensity and 
flux in particle – like terms.
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Monochromatic radiation beam: definitions

70

𝐼 = 𝑁ℏ𝜔 𝐹 =
𝑁

𝐴
ℏ𝜔 𝐹 = Φ ℏ𝜔

N = 

(Number of photons which cross a surface perpendicular to 𝑘 )/ 
(unit time)

I : Intensity = (Energy crossing the surface) / (unit time)

F : Photon flux =
(Number of photons crossing the surface) / (unit time × area)

F: Energy flux= (Energy crossing the surface) / (unit time × area)

𝑘



Interaction between a wave and an atom

71

• The interaction is treated with time dependent
pertubation theory

• The unperturbed atom’s Hamiltonian is 𝐻𝑜
• The pertubation is an EM wave and the time 

dependent interaction Hamiltonian is 𝐻′ 𝑡

• The EM wave has a harmonic dependence on 
time, thus it is expressed by an Hermitian operator 
of the type

𝐻′ 𝑡 = ෩𝐻𝑒𝑖𝜔𝑡 + ෩𝐻†𝑒−𝑖𝜔𝑡

in which ෩𝐻 is an operator which does not depend
on time



Time dependent perturbation theory

72

• The unpertubed atom has eigenstates labelled «a» 

and «b» with energies 𝐸𝑎
0 and 𝐸𝑏

0

➢Often called the «initial» and «final» states

• It can be demonstrated that the transition probability
is maximized for two «resonant» conditions deriving
from different terms in 𝐻′ 𝑡

a

b

ℏ𝜔 = 𝐸𝑏
0 − 𝐸𝑎

0

a

b
ℏ𝜔 = 𝐸𝑎

0 − 𝐸𝑏
0

෩𝐻†𝑒−𝑖𝜔𝑡

෩𝐻𝑒𝑖𝜔𝑡



Time dependent perturbation theory

73

a

b
ℏ𝜔 = 𝐸𝑏

0 − 𝐸𝑎
0

a

b
ℏ𝜔 = 𝐸𝑎

0 − 𝐸𝑏
0

Stimulated absorption
• A photon of energy ℏ𝜔

is absorbed by the atom
• The atom makes a 

transition from a to b

Stimulated emission
• A photon of energy ℏ𝜔

is emitted from the 
atom

• The atom makes a 
transition from a to b

෩𝐻†𝑒−𝑖𝜔𝑡

෩𝐻𝑒𝑖𝜔𝑡



Fermi’s golden rule: transition to discrete states

74

• For the case of absorption it can be demonstrated that, to 
first order in the pertubation, the transition probability per 
unit time for transitions between discrete levels a and b is

𝑊𝑏𝑎 =
2𝜋

ℏ
෩𝐻†

𝑏𝑎
2
𝛿 𝐸𝑏

0 − 𝐸𝑎
0 − ℏ𝜔

• ෩𝐻†
𝑏𝑎 = 𝑏 ෩𝐻† 𝑎 is the matrix element of the perturbation

• The Dirac 𝛿 function is an expression of the conservation of 
energy
➢ Apparently unphysical: the probability is always 0 except at resonance

in which case it diverges. This will be resolved by introducing the 
concept of lifetime of the eigenstates



Fermi’s golden rule: transition to continuum states

75

• For absorption with final states b in the continuum 
it can be shown that

𝑊𝑏𝑎 =
2𝜋

ℏ
෩𝐻†

𝑏𝑎
2
𝜌 𝐸𝑏

0

with the condition that 𝐸𝑏
0 = 𝐸𝑎

0 + ℏ𝜔

• 𝜌 𝐸 is the density of states, such that the number
of states between 𝐸 and 𝐸 + 𝑑𝐸 is

𝑑𝑁 = 𝜌 𝐸 𝑑𝐸



The classical EM field

76

𝐸 Ԧ𝑟, 𝑡 = −𝛻𝜑(Ԧ𝑟, 𝑡) −
𝜕 Ԧ𝐴(Ԧ𝑟, 𝑡)

𝜕𝑡
𝐵 Ԧ𝑟, 𝑡 = 𝛻 × Ԧ𝐴(Ԧ𝑟, 𝑡).

;

• The EM field is described in terms of the vector and

scalar potentials Ԧ𝐴 Ԧ𝑟, 𝑡 and 𝜙 Ԧ𝑟, 𝑡

Electric field

Magnetic induction field



A plane monochromatic EM wave

77

Ԧ𝐴(Ԧ𝑟, 𝑡) = Ƹ𝜀 𝐴 𝜔 𝑒𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟) + 𝐴∗ 𝜔 𝑒−𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)

𝐸 Ԧ𝑟, 𝑡 = −
𝜕 Ԧ𝐴(Ԧ𝑟, 𝑡)

𝜕𝑡
= 𝑖𝜔 Ƹ𝜀 −𝐴 𝜔 𝑒𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟) + 𝐴∗ 𝜔 𝑒−𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)

𝐵 Ԧ𝑟, 𝑡 =
1

𝑐
෠𝑘 × 𝐸

= 𝑖 𝑘 × Ƹ𝜀 −𝐴 𝜔 𝑒𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟) + 𝐴∗ 𝜔 𝑒−𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)

• The polarization is defined by Ƹ𝜀. 
It can be linear or circular

• 𝐴 𝜔 determines the amplitude and
intensity of the wave
➢ Actually it is real, but we keep the complex

notation for consistency



• The unpertubed Hamiltonian for a H – like atom with 
nucleus of charge Z is

𝐻0 =
−𝑖ℏ𝛻

2

2𝑚
−

𝑍𝑒2

4𝜋𝜀0 𝑟

• It can be proved that the total Hamiltonian, including the 
interaction term is

Interaction Hamiltonian

78

𝐻 = −
ℏ2𝛻2

2𝑚
−

𝑍𝑒2

4𝜋𝜀0 𝑟
− 𝑖ℏ

𝑒

𝑚
Ԧ𝐴 ∙ 𝛻 +

𝑒2

2𝑚
Ԧ𝐴2

,



Interaction Hamiltonian

79

𝐻 = −
ℏ2𝛻2

2𝑚
−

𝑍𝑒2

4𝜋𝜀0 𝑟
− 𝑖ℏ

𝑒

𝑚
Ԧ𝐴 ∙ 𝛻 +

𝑒2

2𝑚
Ԧ𝐴2

𝐻′ = −𝑖ℏ
𝑒

𝑚
Ԧ𝐴 ∙ 𝛻

,

• Two pertubation terms: one linear and the other quadratic in Ԧ𝐴

• Consider now the linear term

• Since Ԧ𝐴 Ԧ𝑟, 𝑡 = Ƹ𝜀 𝐴 𝜔 𝑒𝑖 𝜔𝑡−𝑘∙ Ԧ𝑟 + 𝐴 𝜔 𝑒−𝑖 𝜔𝑡−𝑘∙ Ԧ𝑟

it is precisely of the form
𝐻′ 𝑡 = ෩𝐻𝑒𝑖𝜔𝑡 + ෩𝐻†𝑒−𝑖𝜔𝑡

considered in time dependent pertubation theory

➢ ෩𝐻 = Ƹ𝜀𝐴 𝜔 𝑒−𝑖𝑘∙ Ԧ𝑟, ෩𝐻† = Ƹ𝜀𝐴 𝜔 𝑒𝑖𝑘∙ Ԧ𝑟



Interaction Hamiltonian
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𝐻′ = −𝑖ℏ
𝑒

𝑚
Ԧ𝐴 ∙ 𝛻

,

𝐻′ 𝑡 = ෩𝐻𝑒𝑖𝜔𝑡 + ෩𝐻†𝑒−𝑖𝜔𝑡

• This term describes stimulated absorption and emission
processes. Let’s concentrate on absorption, also aptly called 
photoelectric absorption since in the atom an electron makes
a transition induced by the absorption of a photon.

• Absorption is due to ෩𝐻†𝑒−𝑖𝜔𝑡, emission to ෩𝐻𝑒𝑖𝜔𝑡

a

b



Cross section for photoelectric absorption
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𝑊𝑏𝑎 =
2𝜋

ℏ

ℏ2𝑒2

𝑚2
𝐴2 𝜔 𝜓𝑏 𝑒

𝑖𝑘∙ Ԧ𝑟 Ƹ𝜀 ∙ 𝛻 𝜓𝑎
2
𝛿 𝐸𝑏

0
− 𝐸𝑎

0
− ℏ𝜔

,

• Use Fermi’s golden rule. Consider transitions
between discrete bound states a and b.

𝑊𝑏𝑎 =
2𝜋

ℏ
෩𝐻†

𝑏𝑎
2
𝛿 𝐸𝑏

0 − 𝐸𝑎
0 − ℏ𝜔

෩𝐻† = −𝑖
ℏ𝑒

𝑚
Ƹ𝜀𝐴 𝜔 𝑒𝑖𝑘∙ Ԧ𝑟 ∙ 𝛻



Dipole approximation
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.

.

.

• Consider the matrix element

𝑀𝑏𝑎 = 𝜓𝑏 𝑒
𝑖𝑘∙ Ԧ𝑟 Ƹ𝜀 ∙ 𝛻 𝜓𝑎

• An important approximation can be performed in most
spectral ranges. Re-write the matrix element as an integral
in real space:

𝑀𝑏𝑎 = න

𝑉

𝑑3𝑟 𝜓𝑏
∗ Ԧ𝑟 𝑒𝑖𝑘∙ Ԧ𝑟 Ƹ𝜀 ∙ 𝛻 𝜓𝑎 Ԧ𝑟



Dipole approximation
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.

.

. • 𝑀𝑏𝑎 = 𝑉׬ 𝑑3𝑟 𝜓𝑏
∗ Ԧ𝑟 𝑒𝑖𝑘∙ Ԧ𝑟 Ƹ𝜀 ∙ 𝛻 𝜓𝑎 Ԧ𝑟

• The spatial extent of the wavefunctions is at most of 

the order of the typical atomic size 𝑑𝑎~ 1 Å: this
determines the maximum effective value of 𝑟 in the 
integral

• The modulus of the wavevector is 𝑘 =
2𝜋

𝜆

• Therefore if the wavelength is such that
2𝜋𝑑𝑎
𝜆

≪ 1

we can make the approximation that

𝑒𝑖𝑘∙ Ԧ𝑟 = 1



Dipole approximation
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.

.

.
• For valence initial states the dipole approximation 𝑒𝑖𝑘∙ Ԧ𝑟 = 1 is

valid up to the UV.
• For core level initial states of not too light atoms the dipole

approximation continues to be valid.



The cross section in the dipole approx.
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𝜎 = 4𝜋2 ℏ𝜔 𝛼 𝜓𝑏 Ƹ𝜀 ∙ Ԧ𝑟 𝜓𝑎
2𝛿 𝐸𝑏

0
− 𝐸𝑎

0
− ℏ𝜔

• Clearly, dimensions = 𝐿2

• The order of magnitude is determined by the 
dipole matrix element, an effective “area” 
roughly of the order of 𝑎0

2, depending on the 
overlap of initial and final wavefunctions

• The Dirac 𝛿 function is an expression of the 
conservation of energy

• The apparent unphysical divergence will be 
solved introducing the concept of lifetime of 
states



Selection rules
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;

• Using the properties of the spherical harmonics it
can be shown that the selection rule on ℓ is

Δℓ = ±1

• The selection rule on 𝑚 depends on the state of 
polarization of the radiation

➢ For linealy polarized radiation Δ𝑚 = 0

➢ For circularly polarized radiation Δ𝑚 = ±1



Selection rules
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∆ℓ = ±1
Conservation of angular momentum

(modulus)

∆𝑚 = ±1
Conservation of angular momentum

(quantization axis component)



Selection rules
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Δℓ = ±1
Δ𝑚ℓ = 0, lin

= ±1, circ



Lifetime and lineshape
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Level 2p 3s 3p 3d 4s 4p 4d 4f

Lifetime (ns) 1.6 160 5.4 15.6 230 12.4 36.5 73

.

.

• We have implicitly assumed that all atomic eigenstates have
infinite lifetime. Apart from the fundamental state (1s) this is
not true.

• All states have a finite lifetime due to
➢ Spontaneous emission, also present for isolated atoms
➢ Collisions between atoms, which induce electron transitions, present

in gases at non negligible pressure

• If 𝑁0 atoms are in a given state at 𝑡 = 0, their number decays
exponentially as

𝑁 𝑡 = 𝑁0𝑒
−
𝑡
𝜏

• For the H atom, the lifetimes 𝜏 of electronic states are



Lifetime and lineshape
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.

.

.

• A finite lifetime implies a spectral broadening
➢ Transitions do not occur at a single photon energy

ℏ𝜔𝑏𝑎 = 𝐸𝑏
0 − 𝐸𝑎

0

➢ Transitions occur in a band centered around
ℏ𝜔𝑏𝑎 with a broadening 𝛤 which can be 
estimated from the Heisenberg uncertainty
principle

• From the energy – time Heisenberg uncertainty
principle, interpret 𝜏 as uncertainty in time, 
thus

𝛤 ≥
ℏ

𝜏



Lifetime and lineshape
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.

.

.

• It can be proved that this spectral broadening results in a 
Lorentzian lineshape as a function of energy

• For a transition between states with lifetimes 𝜏𝑎 and 𝜏𝑏 the 
Lorentzian half width at half maximum (HWHM) is

Γ = ℏ
1

𝜏𝑎
+
1

𝜏𝑏
• The energy dependence of the cross section, the lineshape, is

proportional to

𝐿 𝜔 =
Γ2

ℏ2 𝜔𝑏𝑎 −𝜔 2 + Γ2

• This spectral broadening resolves the apparently unphysical
result that the cross section is proportional to a 𝛿 function.



Lifetime and lineshape
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.

.

0
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x
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x

𝐿
𝜔

𝜔𝑏𝑎

𝜔𝑏𝑎 +
Γ

ℏ𝜔𝑏𝑎 −
Γ

ℏ

𝐿 𝜔 =
Γ2

ℏ2 𝜔𝑏𝑎 − 𝜔 2 + Γ2



Scattering of radiation
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ℏ𝜔, 𝑘
ℏ𝜔′, 𝑘′

• 𝜔′ = 𝜔 : elastic scattering
➢ In general: Raleigh
➢ For a free electron: Thomson

• 𝜔′ ≠ 𝜔 : inelastic scattering
➢ In general: Raman
➢ For a free electron: Compton (w' < w )

• From the particle point of view scattering is a 2 
photon process: a photon is absorbed (destroyed) and 
another is emitted (created).

• The scattered photon in general has a different energy
and different wave vector (modulus and/or direction)



Scattering cross section
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.

.

.

.

• Recall that the interaction Hamiltonian is

𝐻′ =
𝑒

𝑚
Ԧ𝐴 ∙ Ԧ𝑝 +

𝑒2

2𝑚
Ԧ𝐴2

with

Ԧ𝐴(Ԧ𝑟, 𝑡) = Ƹ𝜀 𝐴 𝜔 𝑒𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟) + 𝐴 𝜔 𝑒−𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)

• Absorption is due to 𝐴 𝜔 𝑒−𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)

• Emission is due to 𝐴 𝜔 𝑒𝑖(𝜔𝑡−𝑘∙ Ԧ𝑟)



Scattering cross section
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.

.

.

.

• Scattering is a 2 photon process which is due to

➢ The quadratic term
𝑒2

2𝑚
Ԧ𝐴2, in first order pertubation theory 

(Fermi’s golden rule)

➢ The linear term
𝑒

𝑚
Ԧ𝐴 ∙ Ԧ𝑝 , treated as a second order

pertubation

• Qualitatively,  it can be justified by interpreting each Ԧ𝐴
term as involving 1 photon (either absorbed or 
emitted).



X-ray scattering cross section
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.

.

.

.

• Define

Ԧ𝑞 = 𝑘′ − 𝑘

the exchanged wavevector.

𝑘

Ԧ𝑞 𝑘′

• Term which describes scattering of X-rays (high energy

limit) is
𝑒2

2𝑚
Ԧ𝐴2 using 1st order pertubation theory.



Fermi’s GD for continuum final states
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.

.

.

• Fermi’s GD for final states in the continuum is

𝑊𝑏𝑎 =
2𝜋

ℏ
෩𝐻†

𝑏𝑎
2
𝜌 𝐸𝑏

0

𝐸𝑏
0 = 𝐸𝑎

0 + ℏ𝜔

• The density of states 𝜌 𝐸 is the number of states
of energy between 𝐸 and 𝐸 + 𝑑𝐸:

𝑑𝑁 = 𝜌 𝐸 𝑑𝐸
with the specification of the dispersion relation 
applicable for photons

𝜔 = 𝑐𝑘
𝐸 = ℏ𝜔 = ℏ𝑐𝑘



Scattering geometry
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.

.

.

• We will discuss the cross section for scattering in which
the scattered photon has direction defined by the 

wave vector 𝑘′ within an infinitesimal solid angle 𝑑Ω
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X-ray scattering cross section
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• It can be proved that the differential cross section is

𝑑𝜎

𝑑Ω
=

𝑒4

16𝜋2𝜀0
2𝑚2𝑐4

𝜔′

𝜔
Ƹ𝜀 ∙ Ƹ𝜀′ 2 𝑏 𝑒−𝑖𝑞∙ Ԧ𝑟 𝑎

2

= 𝑟0
2

𝜔′

𝜔
Ƹ𝜀 ∙ Ƹ𝜀′ 2 𝑏 𝑒−𝑖𝑞∙ Ԧ𝑟 𝑎

2

𝑟0 =
𝑒2

4𝜋𝜀0𝑚𝑐2
≅ 2.82 × 10−15 𝑚, the «classical electron radius» or 

«Thomson scattering length» 



Scattering of radiation: general case
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• In the general case (not only X-rays) one has to use both terms
of the interaction Hamiltonian

𝐻′ = −𝑖ℏ
𝑒

𝑚
Ԧ𝐴 ∙ 𝛻 +

𝑒2

2𝑚
Ԧ𝐴2

=

=
𝑒

𝑚
Ԧ𝐴 ∙ Ԧ𝑝 +

𝑒2

2𝑚
Ԧ𝐴2.

Linear term: second order pertubation theory
Quadratic term: first order pertubation theory



Scattering of radiation: general case
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• It can be demonstrated that in the dipole approximation the 
differential cross section is the Kramers – Heisenberg formula

𝑑𝜎

𝑑Ω
= 𝑟0

2𝜔𝜔′3 𝑚෍

𝑛

Ƹ𝜀′ ∙ Ԧ𝑟𝑏𝑛 Ƹ𝜀 ∙ Ԧ𝑟𝑛𝑎

𝐸𝑛
0 − 𝐸𝑎

0 − ℏ𝜔
+

Ƹ𝜀 ∙ Ԧ𝑟𝑏𝑛 Ƹ𝜀′ ∙ Ԧ𝑟𝑛𝑎

𝐸𝑛
0 − 𝐸𝑎

0 + ℏ𝜔′

2

with the condition that

𝐸𝑎
0 + ℏ𝜔 = 𝐸𝑏

0 + ℏ𝜔′

and the sum is over all atomic states 𝑛.



Scattering of radiation: general case
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•
𝑑𝜎

𝑑Ω
= 𝑟0

2𝜔𝜔′3 𝑚σ𝑛
ො𝜀′∙ Ԧ𝑟𝑏𝑛 ො𝜀∙ Ԧ𝑟𝑛𝑎

𝐸𝑛
0−𝐸𝑎

0−ℏ𝜔
+

ො𝜀∙ Ԧ𝑟𝑏𝑛 ො𝜀′∙ Ԧ𝑟𝑛𝑎

𝐸𝑛
0−𝐸𝑎

0+ℏ𝜔′

2

• A «picture» of this equation
➢ Scattering is due to the sum of «virtual» transitions to 

intermediate states.
➢ Conservation of energy is valid only globally,  not for 

transitions to intermediate «virtual» states
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