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How to see small objects

If we want to see things, we need light.
Depending on the object and the features we want to detail, the radiation must
be appropriately selected. Imaging is a vital tool in natural science, but until the
XIX century, the only light practicably usable for taking pictures of the objects
under investigation, was the light visible by human eye, and the only technique
to reconstruct a magnified image of a body was the optical microscopy.
The perspective changed disruptively after the discovery of X-rays at the end of
the XIX century. The higher energy of this radiation implied an unprecedented
penetration power that enabled to inspect the inside of objects.
Even more, the higher energy meant noticeably short wavelength and therefore
the ability to detail smaller particles and inspect that mysterious part of the realm
that was puzzling physicists at the turn of the century.
Weiss (1996) provocatively wrote that “if it were not for electrons, photons would
leave in a dreary world of nothingness”. Indeed, it is through interaction between 
photons and electrons that we can do the observations and without this 
interaction photons would be “useless”.



If we use visible light and a magnifying lens…
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With an objective lens, we can 
magnify 10-1000 times. 
That’s not enough to see 
atoms! 
What is the limit?



Resolution Limit

minimal distance
that we can resolve

numerical aperture
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So we need the right wavelength…..

We need a sufficiently high energy radiation: X-ray or γ-ray
but also….
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Dualism particle/wave
hmcE  2

E = energy
m = mass
h = Plank’s constant
υ = frequency
 = wavelength
c = speed of light in vacuum
v = speed of light in a medium
n = refraction index



What kind of lens….

In a conventional, optical microscope, 
lenses uses refraction of light to focus 

the rays and form the image



But….. at high Energy, n ≈ 1



Electromagnetic lenses

If the beam is charged, like a beam of electrons, 
one can use magnetic fields to deflect their paths 
and obtain the same effect of a glass lens (though 
for a wavelength that can be appropriate to see 
small objects)
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Electron microscope

e-

Electromagnetic lens By accelerating electrons to ca. 
50-300 kV, hypothetical
resolutions of less than 1 nm 
are achievable

PROBLEM: electrons are 
charged and therefore
extremely sensistive to 
particles along their path. 
High vacuum is necessary

What is the back focal plane image?

If the object is a 
crystal



X-ray crystallography

There are two “crystallography”: before and after 1896

The revolution: in 1913 Bragg and von Laue determined crystals structures of NaCl, 

KCl, KBr, KI, ZnS, Diamond etc. using the diffraction of X-rays produced by crystals. 



What is a crystal?

A crystal is an anisotropic, homogeneous object, that possesses a three-dimensional 
periodic order generated by the exact repetition of elementary bricks

Gas / liquid 
(indistinguishable 

above the critical point)

representation Molecular 
distribution
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Crystalline state



The crystal structure

The crystal structure is the set of positions occupied by 
regularly disposed atoms in an ideal crystal. 



The crystal lattices

A lattice in the vector space ୬ is the set of all integral linear combinations

ଵ ଵ ଶ ଶ ௞ ௞

of a system ( ଵ, ଶ…. ௞) of linearly independent vectors in ୬

If ,  i.e. if the linearly independent system is a basis of ୬, the lattice is often 
called a full lattice. In crystallography, lattices are almost always full lattices, therefore 
the attribute full is usually suppressed. 



The crystal lattices



The crystal lattices

Unit cell

a

b

c
A

C

B

Unit cell vectors
Unit cell faces



The crystal lattices

F-centered unit cell

a

b

c

Primitive unit cell



The crystal lattices

Centering typeAngular metricAxis metricLattice type
Noneα ≠ β ≠ γ≠ 90°a ≠ b ≠ cTriclinic
A, C, Iα = γ = 90°, β > 90°a ≠ b ≠ cMonoclinic
A, B, C, F, Iα = β = γ = 90°a ≠ b ≠ cOrthorhombic
Iα = β = γ = 90°a = b ≠ cTetragonal
Noneα = β = γa = b = cTrigonal Rhombohedral
Rα = β = 90°, γ = 120°a = b ≠ cHexagonal, Trigonal
F, Iα = β = γ = 90°a = b = cCubic

a

b

c
Lattice node at unit cell vertex

Lattice node at unit cell centre

Lattice node at unit cell face centre



The crystal symmetries: 32 crystallographic point groups

non-centrosymmetric point group
centrosymmetric 

point group 
(Laue class)

lattice type

compatible with chiralityachiralachiral

11തTriclinic
2𝑚2/𝑚Monoclinic

222𝑚𝑚2𝑚𝑚𝑚Orthorhombic

44ത4/𝑚

Tetragonal
422

4ത𝑚2
4/𝑚𝑚𝑚

4𝑚𝑚

33തTrigonal 
Rhombohedral 323𝑚3ത𝑚

66ത6/𝑚

Hexagonal
622

6ത2𝑚
6/𝑚𝑚𝑚

6𝑚𝑚

23𝑚3
Cubic

4324ത3𝑚𝑚3𝑚



The crystal symmetries: 230 crystallographic space groups

14 lattice types (lattice systems)
describe the combinations of 
translational vectors allowed in 3D

32 point group classes
Describe symmetry of the 
periodic system as a whole object

230 space groups
Describe completely the structure

+ symmetry elements including 
partial translations 

(glide planes and helical axes )



The crystal symmetries: 230 crystallographic space groups

P 21 21 21

Centered or primitive lattice
P = primitive
A = face A (formed by b and c vectors) is centered
B = face B (formed by a and c vectors) is centered
C = face C (formed by a and b vectors) is centered
F = all faces are centered
I = body centered

Contracted form of the symmetry 
along a specific directions 
Sometime the space group symbol 
is also contracted, removing 
directions having only identity (for 
example P21/c (the extended 
symbol would be P 1 21/c 1)



The crystal symmetries: properties

Neumann’s principle: 
If a crystal structure is invariant with respect to certain symmetry 
operations, any of its physical properties must also be invariant 
with respect to the same symmetry operations.



The crystal symmetries: properties

Pyroelectric (polar) point groupsPiezoelectric point groupsCrystal system

11Triclinic

22, 𝑚Monoclinic

222222, 𝑚𝑚2Orthorhombic

4, 4𝑚𝑚4, 4ത, 422, 4𝑚𝑚, 42𝑚Tetragonal

3, 3𝑚3, 32, 3𝑚Trigonal

6, 6𝑚𝑚6, 6ത, 6𝑚𝑚, 622, 62𝑚Hexagonal 

23, 4ത3𝑚Cubic



The crystal symmetries: diffraction

non-centrosymmetric point group
centrosymmetric 

point group 
(Laue class)

lattice type

compatible with chiralityachiralachiral

11തTriclinic
2𝑚2/𝑚Monoclinic

222𝑚𝑚2𝑚𝑚𝑚Orthorhombic

44ത4/𝑚

Tetragonal
422

4ത𝑚2
4/𝑚𝑚𝑚

4𝑚𝑚

33തTrigonal 
Rhombohedral 323𝑚3ത𝑚

66ത6/𝑚

Hexagonal
622

6ത2𝑚
6/𝑚𝑚𝑚

6𝑚𝑚

23𝑚3
Cubic

4324ത3𝑚𝑚3𝑚



What is a crystal in X-ray diffraction experiments?

A crystal is like a magnifying tool that 
enables the visualization of its microscopic 

(sub-nanometric) constituents and the 
enhancement of their properties



Diffraction of light: Huygens principle

Any wave can be thought of as spreading spherically at every point along its wave front. 
All these little spherical 'wavelets' are constantly interacting, so can maintain a planar (or 
flat) wave front. But if this wave front is interrupted by an obstacle the wave spreads 
spherically at the points where it has been broken.



Diffraction from one slit

Two rays will form destructive interference if 

𝑟 =  (𝑑/2 sin 𝜗)  =  𝑛 /2

Thus, destructive interference is present if 


Everywhere else there is some non-destructive 
interference



Diffraction from two slits

These two rays will form constructive interference if 

𝑟 =  (𝑎 𝑠𝑖𝑛 𝜗)  =  𝑛 

Everywhere else there will be destructive interference



Diffraction from two slits

Conditions imposed by the slit separation

Diffraction from a single slit

Diffraction from two slits



Diffraction images

If we take a metal slit with a micrometric aperture 
and irradiate with a visible light (nanometric 
wavelength ) we observe a scattering that depends 
on:
a) Shape and size of the aperture
b) Wavelength of the radiation

If we take a slit with a periodic distribution of 
apertures, the diffraction pattern depends also on 
the lattice 



Interference of waves

The analogy between X-ray and visible light is clear if we think of atoms like 
“slits” or obstacles that deviate the waves with a specific “form factor”

If atoms are arranged periodically, then the diffraction pattern will resemble that 
of a grid put in visible light

Suppose these are atoms



Diffraction Images

Laser (0.7 μm)

Slides with micrometric dots Diffraction images

Laser (0.7 μm)

Laser (0.7 μm)



Microscopy/Diffraction two sides of the same coin

Li
gh
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Dia

Lens

Diffraction image
Image

100 μm 10 cm 

Laser (0.7 μm)



Microscopy/Diffraction two sides of the same coin

X-ray

Crystal

Lens

Diffraction image
Image

100 nm 

~  0.1 nm 

With X-rays….



Interaction of X-rays with matter

scattering absorption

refraction

Reflection

fluorescence



Interaction of X-rays with matter



The scattering

E0

I0

X photon, wavelength 𝜆, energy E


E’

e

Ie

• elastic scattering (E0-E’ = 0)

• inelastic scattering (E0-E’ ≠ 0)

I௘÷
1 + cosଶ( 𝜗)

2
I଴

Thomson scattering

Compton scattering

∆𝜆 =
ℎ

𝑚௘𝑐
1 − 𝑐𝑜𝑠𝜗

𝐤଴

𝐤

𝐐

𝑄 = 𝐐 = 𝐤 − 𝐤଴ =
4𝜋𝑠𝑖𝑛𝜃

𝜆
Momentum transfer



The momentum transfer: notations

RemarkModulusSymbol

Wave vectors for scattering and incident directions, respectively2𝜋 𝜆⁄𝐤, 𝐤𝟎 

Wave vectors for scattering and incident directions, respectively1 𝜆⁄𝐬, 𝐬𝟎

Scattering vector (Bragg condition)2𝑠𝑖𝑛𝜗 𝜆⁄𝐇 = 𝐡 = 𝐬 − 𝐬𝟎 = 𝐤 − 𝐤𝟎 /2𝜋

Scattering vector (general)2𝑠𝑖𝑛𝜗 𝜆⁄𝐒 = 𝐬 − 𝐬𝟎 = 𝐤 − 𝐤𝟎 /2𝜋

Scattering vector (typically used for small angle scattering or total scattering)4𝜋𝑠𝑖𝑛𝜗 𝜆⁄𝐐 = 𝐪 = 𝐤 − 𝐤𝟎

Scattering vector4𝜋𝑠𝑖𝑛𝜗 𝜆⁄𝐊 = 𝐤 − 𝐤𝟎



The atomic scattering

IA

The atomic form factor is the sum of the elastic contribution of all its electrons, 
taking into account the different shapes of the electron clouds around an atom 
(core/valence electrons, for example)

one atom ( electrons)one atom ( electrons)

𝐼஺ ÷ 𝑓஺
ଶ (atomic form factor)

I0

r
𝐤଴

𝐤

𝐐



The scattering of one atom

஺

௏

௜𝐐𝐫

Atomic form factor
Fourier transform of the electron 
density of an isolated atom

atomic riadial electron 
density
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The scattering by N atoms

The waves generated by each atom produce 
interference because they are within the 
coherence domain.
The interference only depends on the relative 
position of the atoms (atomic distances) 
and on the diffusive power of each atom 
(atomic form factors). 

If all the diffusers (atoms) are randomly 
distributed the interference function (s) is 
1.0 (average between 0.0 in case of 
destructive interference and 2.0 in case of 
constructive interference). This in case of 
“ideal amorphous”.

𝐼ଵ(𝑸) = 𝐴(𝑸) ଶ

𝐼(𝑸) =
𝐼ே(𝑸)

𝑁

𝜓(𝐬) =
𝐼(𝑸)

𝐹ଶ(𝑸)
=

𝐼ே(𝑸)

𝑁𝐹ଶ(𝑸)

Unit scattering power

Interference function This determines the phase, which is 
lost when measuring IN(Q)



The scattering by N atoms

Diatomic molecule, assuming 
point charge atoms instead of 
effective atomic density

“real” N2

one isolated N  
two non-interfering N

f2

2f2

4f2



Diffraction from crystals

von Laue described the X-ray diffraction of crystals by modelling a crystal as a combination of three 
one-dimensional atomic nets.

In order to avoid destructive interference it is necessary that all pairs 
of atom have  constructive interference. 
This means that the waves diffused by any two atoms have a phase 
difference of 0 ± nλ

r' - r = a cos() - a cos () = h 

r' - r = a . (S-S0) = h 

Extending in three dimensions, diffraction occurs when the difference between scattered and incident wave 
vectors satisfies the condition along each of the three directions, thus with a “triplet” of integers (h, k , l) 

r’

r

φ

θ

Infinite Periodic crystals



Diffraction from crystals

n = 2 dhklsin

A different viewpoint of the same phenomenon is given by Bragg. Diffraction is regarded as a simple reflection of the photon on a given surface of 
the crystal. However, we must consider that the X-ray beam “penetrates” the surface and therefore contribution from inner layers must also be 
accounted for.



dhklr r + r = 
dhkl sin(θ) +  dhklsin(θ) = n λ

Miller indexes



Diffraction from crystals



Real part

Imaginary part

ieAA 0
amplitude

Phase
(distance from
the origin)



0A

0A

ReA

ImA





Resulting wave amplitude



Polyatomic system

α

β

φ



Periodic system



The reciprocal space

We need a simplified way to handle planes in order to describe
diffraction phenomena from crystals (having in mind Bragg formalism)
and predict diffraction conditions
A family of planes can be simply represented by its normal



dhklr

n = 2 dhklsin n 2 dhkl= sin

A reciprocal lattice vector 
d* is perpendicular to a 
plane and its length is 
inversely proportional to 
dhkl spacing

d*hkl



The reciprocal space

Conditions:

a  a* = 1.0 b  a* = 0.0 c  a* = 0.0
a  b* = 0.0 b  b* = 1.0 c  b* = 0.0
a  c* = 0.0 b  c* = 0.0 c  c* = 1.0

It follows that:   V = 1/V*

A vector in reciprocal space 
represent a plane in direct space

a

c

c*

a*

<100>*

(100)

(001)

<001>*



The Ewald sphere

A virtual construction to predict the necessary orientation a crystal
must assume to give diffraction from a given family of planes

1/

r*hkl

Origin of 
reciprocal lattice



dhkl



The Ewald sphere: Bragg technique

1/



The Ewald sphere: Bragg technique



The Ewald sphere: Laue technique

1/



dhkl

1/’



The “lens”

Reconstruction

Diffraction

Lens

Crystal

X-ray

Fourier Transformation

௜ଶగ𝐇𝐫

ି௜ଶగ𝐇𝐫 ି௜ଶగ𝐇𝐫

𝐇



The phase problem

ଶగ௜ఝಹ ି௜ଶగ𝐇𝐫

𝐇

Phasing the reflections is the main problem
of a crystal structure solution



The truncation problem

The series termination and 
data incompleteness is
also a problem

𝜌 𝐫 =
1

𝑉
෍ 𝐅 𝐇 𝑒ଶగ௜ఝಹ𝑒ି௜ଶగ𝐇𝐫

𝐇



The diffracted intensity

௠௘௔௦ ௛௞௟ ଴ ௛௞௟ ௡ ଴ ௡

௡

𝑄(𝐇௛௞௟) ÷
𝜆ଷ

𝑉ଶ
𝐹௛௞௟

ଶ (𝐇௛௞௟)

incident beam
sample volume

wavelength

absorption coefficient

TDS coefficient

unit cell 
volume

multiple scattering

background

integrated 
reflectivity

𝐹(𝐇௛௞௟) = ෍ 𝑓௠(𝐻) exp( 2𝜋𝑖𝐇 ⋅ 𝐫௠)𝑇௠(𝐇)

௠

structure factor

atomic electron 
form factor

atomic 
temperature 
factor

𝐹(𝐇௛௞௟) = න𝜌̄(𝐫) exp( 2𝜋𝑖𝐇 ⋅ 𝐫)𝑑𝐫

Scattering 
vector

extinction coefficient

Thermally averaged 
electron density

MODEL
atomic position



Ideal, real, twin and powder crystals

Ideal single Crystal 
(perfect, without boundaries)

Real (imperfect)
single crystal:
composed of domains 
(approx. radius 10-4 cm);
The ideally imperfect crystal 
has a statistically distributed 
mosaicity

The twinned crystal consist of 
more than one real crystals fused 
in a single particle
(intergrowth or contact twins are 
possible)

A  powder sample 
consists of several (small) 
real crystals (separated 
from each other)



Diffraction from real single crystals

Single crystal

The mosaicity causes the 
broadening of diffraction spots



Diffraction from twin crystals



Diffraction from powders



Diffraction from powders
lig

ht

Diffraction rings 
instead of 

diffraction spots



Diffraction from powders



Laboratory single crystal diffractometer

Detector

source
crystal



Large scale source diffractometer

Brighter sources
Tunable radiation energies
Micro-focusing



How to solve a crystal structure?

?

We measure this We want to obtain this



How to solve a crystal structure?

φ

We measure this

We cannot measure this

We want to determine these

𝐤𝟎



How to solve a crystal structure?

Screening of crystals 
and analysis of  linear 

optical properties 

Collection of few 
diffraction images to 

detect lattice parameters

Data Collection of a full set of 
reflection intensities; Laue class; 

Space group determination

Structure solution: Patterson or Direct 
methods (or other methods)

(least squares) Refinement of a 
structural model

ଶగ௜ఝಹ ି௜ଶగ𝐇𝐫

𝐇



The structural model

Using structure solution methods like Direct methods or 
Patterson method combined with Fourier synthesis we are 
able to get an approximate model for a crystal structure.

This model consists of the fractional coordinates 𝑥, 𝑦, 𝑧 of 
each atom in the unit cell, at which its spherical electron 
density distribution is centered, and a description of the 
movement of the atom about its mean position as a harmonic 
oscillator characterized by the displacement parameters 𝑢௜௝.

Based on this model we may calculate the structure factors 𝐹𝑚𝑜𝑑𝑒𝑙(𝐇)
associated to each scattering vector H as

zyx ,,

𝑢ଵଵ 𝑢ଵଶ 𝑢ଵଷ

𝑢ଶଵ 𝑢ଶଶ 𝑢ଶଷ

𝑢ଷଵ 𝑢ଷଶ 𝑢ଷଷ

𝐹(𝐇) = ෍ 𝑓௠(𝐻) exp( 2𝜋𝑖𝐇 ⋅ 𝐫௠)𝑇௠(𝐇)

௠



Friedel’s law and its violation

𝐹 𝐇 ଶ = 𝐹 𝐇 F∗(𝐇) = න𝜌̄(𝐫) exp( 2𝜋𝑖𝐇 ⋅ 𝐫)𝑑𝐫 න𝜌̄(𝐫) exp( − 2𝜋𝑖𝐇 ⋅ 𝐫)𝑑𝐫 = 𝐹 −𝐇 ଶ

Friedel, G. (1913). C.R. Acad. Sci. Paris, 157, 1533-1536

𝝋

−𝝋

𝑓௔௧௢௠
଴ 𝐇

𝑓௔௧௢௠
଴ −𝐇

𝑓௔௧௢௠ 𝐇, 𝜔 = 𝑓௔௧௢௠
଴ 𝐇 + ∆𝑓ᇱ 𝐇, 𝜔 + 𝑖∆𝑓ᇱᇱ 𝐇, 𝜔

𝝋𝐇
𝝋ି𝐇

𝝋𝐇 ≠ 𝝋ି𝐇

Without considering the frequency of the X-rays
Friedel’s law is valid

Electronic contribution and resonant electron
Friedel’s law is not valid

𝑓௔௧௢௠ 𝐇 ≠ 𝑓௔௧௢௠ −𝐇



The structural model

The term 𝑇௜ accounts for the fact that the scattering of an atom at rest is affected by its thermally 
induced motion about its mean position.
For an anisotropic motion 𝑇௜ becomes more complicated

The so called anisotropic displacement parameters u௜௝ are the elements of a 
symmetrical tensor, i.e. a quantity which is defined by the length and direction of 
three mutually perpendicular vectors. It’s usual graphical representation is a so called
vibration or displacement ellipsoid with the three principal axes U1, U2 and U3.  

a

b

c

మ ೅
೘

𝐔ଵ

𝐔ଶ

𝐔ଷ



The structural model: refinement

The model coming out from structure solution, as already mentioned, is approximate. How could we improve it?

In crystallography this model is improved by the so-called least squares technique.

We may calculate from our approximate model the intensities 𝐼௠௢ௗ௘௟

The scale factor k is needed to scale our model intensities to the measured intensities which depend on many things 
as e.g. the volume of the crystal.

The quantity which we minimize in least squares is S, the sum over all weighted squared deviations between 
𝐼௢௕௦ and 𝐼௠௢ௗ௘௟

𝐼௠௢ௗ௘௟ 𝐇 =
1

𝑘
𝐹௠௢ௗ௘௟ 𝐇

ଶ

𝑆 ෍ 𝑤(𝐇) 𝐼௢௕௦ 𝐇 −
1

𝑘
𝐹௠௢ௗ௘௟ 𝐇 ଶ

ଶ

𝐇

𝑤 𝐇 =
1

𝜎ଶ(𝐼 𝐇 )



The structural model: refinement

The function S(model parameters) is a complicated hyper surface in n-
dimensional space, where n = number of parameters. It has an absolute 
minimum, which corresponds to the best solution, and many relative 
minima. If our structure model is far away from the correct solution, our 
shifts in the parameters will be big and thus the linear approximation will 
not be valid anymore.

One possible consequence of this is that we may end up in a false 
relative minimum. We somehow have to find a better model.

Another possible consequence is that our refinement never goes to a 
minimum but keeps jumping around in hyperspace, possibly with 
increasing parameter shifts: The refinement does not converge or even 
explodes.
In such a situation it may help to damp the parameter shifts

As shifts will be small for high damping we have to calculate much more 
least squares cycles to eventually reach convergence. 𝑥௝ (variables of the model)

S



Model quality measurement

The goodness of fit (GOF or GOOF) is the variance of an observation of unit weight

Its expectation value is 1.0.

𝐺. 𝑜. 𝐹. should be close to 1 for all reflections grouped either in ranges of resolution or in ranges of F2

Typical values for 𝑤𝑅ଶ are 0.1+/-0.09

𝐺. 𝑜. 𝐹. =
∑ 𝑤𝐇 𝐹௢௕௦

ଶ − 𝐹௖
ଶ ଶ

𝐇

𝑛௢௕௦ − 𝑛௣௔௥

𝑤𝑅ଶ =
∑ 𝑤𝐇 𝐹௢௕௦

ଶ − 𝐹௖
ଶ ଶ

𝐇

∑ 𝑤𝐇 𝐹௢௕௦
ଶ ଶ

𝐇



Model quality measurement

𝑅ଵ does not have any relation to the theory of least squares and has a not 
well defined relation to statistical theory. 
As a rule of thumb: 𝑤𝑅ଶ ~ 2 𝑅ଵ

Other criteria:
𝑤𝑅ଶ >> 𝑅௜௡௧ : model probably not complete
𝑅௜௡௧ >> 𝑤𝑅ଶ : model may be over-parameterised

Another often used quality measure is



Beyond conventional models: visualization of the 
chemical bond through the deformation density

Coppens, P. Science, 1967, 158, 1577–1579. 

∆𝜌 𝐫 =
1

𝑉
෍ 𝐅௑ି௥௔௬,௢௕௦(𝐤) − 𝐅௖௔௟௖,௦௣௛௘௥(𝐤) 𝑒௜𝐤𝐫

𝐤 ஸ௞೘ೌೣ

Based on a model refined
from neutron diffraction



Beyond conventional models:
The multipolar model

𝜌௜(𝐫) = 𝜌௜,௖௢௥௘ 𝐫 + 𝑃௜,௩௔௟𝜅௜,௩௔௟௘௡௖௘
ଷ 𝜌௜,௩௔௟௘௡௖௘ 𝜅𝐫 + ෍ 𝜅ᇱ

௜
ଷ

𝑅௜,௟(𝜅௟
ᇱ𝐫) ෍ 𝑃௜,௟௠±𝑦௟௠±(𝒓 𝑟⁄ ൯

௠ୀ଴,௟

௟೘ೌೣ

௟ୀ଴,

Atom centred multipolar expansion with adjustable coefficients against Bragg intensities

𝜌௨௡௜௧ ௖௘௟௟ 𝐫 = ෍ 𝜌௜ 𝐫 − 𝐫௜

ே௔௧ ∈ 
௨௡௜௧ ௖௘௟௟

௠ୀଵ

Kurki-Suonio K., Meisalo V. J. Phys. Soc. Jap. 1966, 21, 122–126.  Stewart R. F. Acta Cryst.,1976, A32, 565-574. Hirshfeld F. L. Isr. J. Chem. 1977, 16, 226-229. Hansen NK, Coppens P. Acta Cryst. 1978, A34, 909-921.

𝜌௜,ௗ௘௙௢௥௠௔௧௜௢௡ି௩௔௟௘௡௖௘ 𝒓
ℱ(𝜌௜ഥ 𝐫 ) 𝑓௜(𝐤) ෍ 𝑓௜ 𝐤

ே௔௧

௜ୀଵ

𝑒ି௜ఝ 𝑭 𝐤 I(𝐤) ÷ 𝑭 𝐤 𝟐

Conventional crystal structure refinement



Beyond conventional models:
The multipolar model

Resolution 

1 Å 0.8 Å 0.5 Å

An Enzyme consisting
of amino acids 

(N-methyl histidine) 

L-Histidinium cation in a oxalate  salt
2 e/Å3 isosurface

Deformation density of the L-Histidinium cation
blue-positive, orange -negative; 0.12e/Å3 isosurface

Chemical 
Bonding

d =


2sin𝜗Molecular 
structure

d space resolution
 X-ray wavelength 



Beyond conventional models:
Wavefunctions from X-ray diffraction

Weiss RJ. X-ray determination of Electron Distributions. North-
Holland Publishing Company. Amsterdam. 1966. 

Richard J. Weiss 
(1923-2008)

Ĥ E 

Wavefunction models: a molecular wavefunctions 
adjusted to reproduce the measured X-ray diffraction

2

( ) ( ) r r

ˆ HF HF HFH E 
Approximated Hamiltonian (e.g. Hartree-Fock)

ˆ ˆ ˆHF

err X ray HF
H H H    

Perturbative approach



Beyond conventional models:
Wavefunctions from X-ray diffraction

𝐽መ = 𝐻෡଴ 𝜓଴ + 𝜆 𝜒ଶ 𝜓଴ − Δ

Wavefunction models: a molecular wavefunctions adjusted 
to reproduce close enough the measured X-ray diffraction

𝜒ଶ =
1

𝑁௥ − 𝑁௣
෍

𝜂 𝐹𝐇
଴ ଶ

− 𝐹𝐇
ଡ଼ି୰ୟ ଶ

𝜎 𝐹𝐇
ଡ଼ି୰ୟ୷ ଶ

𝐇

Jayatilaka D. Phys. Rev. Lett. 1998, 80, 798–801.

Gillet J-M. Acta Cryst. 2007, A63, 234-238.

Density matrix models: Refinement of atomic 
expansion against Compton profiles

,

( , ) ( , ) ( , )a ab
a a b

       r r r r r r

Clinton W, Massa L. Phys. Rev. Lett. 1972, 29, 1363-1366.

Density matrix from X-ray diffraction experiments.
N-representability problem

𝐽መ𝜓௑ோௐ = 𝐿𝜓௑ோௐ

Dylan Jayatilaka Jean Michel Gillet Lou Massa William L. Clinton



Take home message

• Diffraction is the other side of the coin of microscopy
• X-ray diffraction is the manifestation of the elastic scattering of photons by 

electrons of periodically ordered (crystalline) solids
• The result of X-ray diffraction is not a direct image of the inner structure of the 

material. The outcome is a model, with parameters refined in order to minimize
the discrepancies with respect to observations.

• The model can go well beyond the simple positions of atoms in the structure. One
can refine the average distribution of electrons or even compute a wavefunction
restrained to the experimental observations.


