

Titolo presentazione e in contra una provincia di una provincia di una provincia di una provincia di una provi X-ray diffraction

Department of Chemistry, Materials, Chemical Engineering "Giulio Natta",

How to see small objects

How to see small objects

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, b **How to see small objects**

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, b **How to see small objects**

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, b How to see small objects

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

Depending on the object and the features we want to detail, the radiation How to see small objects

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, but **How to see small objects**
If we want to see things, we need light.
Depending on the object and the features we want to detail, the radiation must
be appropriately selected. Imaging is a vital tool in natural science, but **How to see small objects**

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, b **How to see small objects**

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, b **How to see small objects**

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

Deepending on the object and the features we want to detail, the radiati How to see small objects

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natural science, but If we want to see things, we need light.
Depending on the object and the features we want to detail, the radiation must
be appropriately selected. Il maging is a vital tool in natural science, but until the
KIX century, th If we want to see things, we need light.
Depending on the object and the features we want to detail, the radiation must
be appropriately selected. Imaging is a vital tool in natural science, but until the
XIX century, the If we want to see things, we need light.

If we want to see things, we need light.

Depending on the object and the features we want to detail, the radiation must

be appropriately selected. Imaging is a vital tool in natu If we want to see things, we need light.
Depending on the object and the features we want to detail, the radiation must
be appropriately selected. Imaging is a vital tool in natural science, but until the
bXIX century, the

photons and electrons that we can do the observations and without this interaction photons would be "useless".

If we use visible light and a magnifying lens…

With an objective lens, we can magnify 10-1000 times. That's not enough to see What is the limit?

Resolution Limit

So we need the right wavelength…..

We need a sufficiently high energy radiation: X-ray or γ -ray Decreasing Wavelength, Increasing Frequency but also….

What kind of lens….

In a conventional, optical microscope, lenses uses refraction of light to focus the rays and form the image

But….. at high Energy, $n \approx 1$

Electromagnetic lenses

Electron microscope

50-300 kV, hypothetical resolutions of less than 1 nm

1 nm

1 nm

1 nm

1 nm

2 nm
 are achievable **Example 18 Separation Separation Separation**

By accelerating electrons to ca.

50-300 kV, hypothetical

resolutions of less than 1 nm

are achievable
 PROBLEM: electrons are

charged and therefore

extremely sensistive

Example 11

By accelerating electrons to ca.

50-300 kV, hypothetical

resolutions of less than 1 nm

are achievable
 PROBLEM: electrons are

charged and therefore

extremely sensistive to

particles along their path.

H Extremely accelerating electrons to ca.

50-300 kV, hypothetical

resolutions of less than 1 nm

are achievable
 PROBLEM: electrons are

charged and therefore

extremely sensistive to

particles along their path.

High v **Example 18 Separation Separation Separation**
By accelerating electrons to ca.
50-300 kV, hypothetical
resolutions of less than 1 nm
are achievable
PROBLEM: electrons are
charged and therefore
extremely sensistive to
par High vacuum is necessary

crystal

X-ray crystallography

KCl, KBr, KI, ZnS, Diamond etc. using the diffraction of X-rays produced by crystals.

What is a crystal?

A crystal is an anisotropic, homogeneous object, that possesses a three-dimensional periodic order generated by the exact repetition of elementary bricks

The crystal structure

The crystal structure is the set of positions occupied by regularly disposed atoms in an ideal crystal.

Elettra Sincrotrone Trieste

A lattice in the vector space \mathbf{V}^n is the set of all integral linear combinations

 $\mathbf{t} = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + ... + u_k \mathbf{a}_k$

of a system $(a_1, a_2,... a_k)$ of linearly independent vectors in $Vⁿ$

If $k = n$, *i.e.* if the linearly independent system is a basis of $Vⁿ$, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute *full* is usually suppressed.

- Lattice node at unit cell vertex \circ
- Lattice node at unit cell centre
- Lattice node at unit cell face centre \bullet

The crystal symmetries: 32 crystallographic point groups

Elettra Sincrotrone Trieste

Sincrotrone

The crystal symmetries: 230 crystallographic space groups

The crystal symmetries: 230 crystallographic space groups

Centered or primitive lattice

- $P =$ primitive
-
-
-
- $F =$ all faces are centered
- $I = body$ centered

Fig. 230 crystallographic
 $\begin{array}{ccc}\n & \mathbf{P} & \mathbf{2}_1 & \mathbf{2}_1 \\
 & \mathbf{2}_2 & \mathbf{2}_3 & \mathbf{2}_4 \\
 & \mathbf{2}_3 & \mathbf{2}_4 & \mathbf{2}_5 & \mathbf{2}_7 \\
 & \mathbf{2}_4 & \mathbf{2}_5 & \mathbf{2}_7 & \mathbf{2}_8 & \mathbf{2}_9 \\
 & \mathbf{2}_7 & \mathbf{2}_8 & \mathbf{2}_9 & \mathbf{2}_9 & \mathbf{2}_9 & \mathbf{2}_9 \\
 & \mathbf{2}_8 & \mathbf{$ Example Particle

Centered or primitive lattice

P = primitive

A = face A (formed by <u>b</u> and c vectors) is centered

B = face B (formed by <u>a</u> and c vectors) is centered

C = face C (formed by <u>a</u> and <u>b</u> vectors) is cent Centered or primitive lattice

Particular Contracted form of the syremetrive

Perpimitive

Perpimitive lattice

Perpimitive lattice

Perpimitive

A = face A (formed by <u>b</u> and <u>c</u> vectors) is centered

Sometime the space g Contracted form of the symmetry along a specific directions Sometime the space group symbol is also contracted, removing directions having only identity (for example **P2₁/c** (the extended symbol would be $P\ 1\ 2_{1}/c\ 1)$

The crystal symmetries: properties

Neumann's principle:

If a crystal structure is invariant with respect to certain symmetry operations, any of its physical properties must also be invariant with respect to the same symmetry operations.

The crystal symmetries: properties

The crystal symmetries: diffraction

What is a crystal in X-ray diffraction experiments?

A crystal is like a magnifying tool that enables the visualization of its microscopic (sub-nanometric) constituents and the enhancement of their properties

Diffraction of light: Huygens principle

Any wave can be thought of as spreading spherically at every point along its wave front. All these little spherical 'wavelets' are constantly interacting, so can maintain a planar (or flat) wave front. But if this wave front is interrupted by an obstacle the wave spreads spherically at the points where it has been broken.

Diffraction from one slit

interference

Diffraction from two slits

 \overline{d}

 \overline{a}

 ϑ

These two rays will form constructive interference if

Everywhere else there will be destructive interference

Diffraction from two slits

Diffraction images

If we take a metal slit with a micrometric aperture and irradiate with a visible light (nanometric wavelength) we observe a scattering that depends on: a) Shape and size of the aperture **nages**
 Solution

If we take a metal slit with a micrometric aperture

and irradiate with a visible light (nanometric

vavelength) we observe a scattering that depend

on:

a) Shape and size of the aperture

b) Wavelen

-
-

If we take a slit with a periodic distribution of apertures, the diffraction pattern depends also on the lattice

Interference of waves

The analogy between X-ray and visible light is clear if we think of atoms like "slits" or obstacles that deviate the waves with a specific "form factor" If atoms are arranged periodically, then the diffraction pattern will resemble that of a grid put in visible light

Diffraction Images

Microscopy/Diffraction two sides of the same coin

Microscopy/Diffraction two sides of the same coin

Interaction of X-rays with matter

Interaction of X-rays with matter

Photoelectric effect

Auger electron

N

N

The scattering

1	1
1 _e	
Q	$Q = Q = k - k_0 = \frac{4\pi \sin \theta}{\lambda}$
Q	Momentum transfer

\n1

\n2

\n3

\n4

\n5

\n5

\n6

\n7

\n8

\n

• elastic scattering $(E_0 - E' = 0)$ \longrightarrow $I_e \div \frac{1}{2} I_0$ 2 \sim \sim \sim I_0 Thomson scattering

 $-E' \neq 0$) \longrightarrow $\Delta \lambda =$ $h \sim 2$ $m_e c$ \sim \sim \sim \sim \sim

Compton scattering

The momentum transfer: notations

The atomic scattering

The **atomic form factor** is the sum of the elastic contribution of all its electrons, (core/valence electrons, for example)

The scattering of one atom

density 30.0

Sincrotrone

The scattering by N atoms

The scattering by N atom
\n
$$
\psi(s) = \frac{I(Q)}{F^2(Q)} = \frac{I_N(Q)}{NF^2(Q)}
$$
\n
$$
I(Q) = \frac{I_N(Q)}{N}
$$
\nIf all the diffusers (atoms
\ndistributed the interference
\n1.0 (average between 0.)
\ndestructive interference is

Interference function The waves generated by each atom produce This determines the phase, which is interference because they are within the coherence domain.

 $\frac{T(Q)}{F^2(Q)} = \frac{T_N(Q)}{NF^2(Q)}$ The interference only depends on the relative position of the atoms (**atomic distances**) \diagup and on the diffusive power of each atom (atomic form factors). $I_N(\boldsymbol{Q})$ concretive $NF^2(Q)$ notion of the metric of the metric of \mathcal{L}

 \overline{N} if all the diffusers (atoms) are randomly **g by N atoms**

The waves generated by each atom produce

interference because they are within the

coherence domain.

The interference only depends on the relative

position of the atoms (atomic distances)

(atomic form 1.0 (average between 0.0 in case of destructive interference and 2.0 in case of constructive interference). This in case of "ideal amorphous". (a) the interference only depends on the relative position of the atoms (atomic distances) and on the diffusive power of each atom (atomic form factors).

If all the diffusers (atoms) are randomly distributed the interfer Unit scattering power \blacksquare distributed the interference function $\mathcal{W}(s)$ is

lost when measuring $I_N(\boldsymbol{Q})$

The scattering by N atoms

Diffraction from crystals

r'

 ϕ and ϕ

 θ

crystals
 ifinite Periodic crystals

ttion of crystals by modelling a crystal as a combination of three

In order to avoid destructive interference it is necessary that all

of atom have constructive interference.

Th **Periodic crystals**

stals by modelling a crystal as a combination of three

avoid destructive interference it is necessary that all pairs

we constructive interference.

sthat the waves diffused by any two atoms have a p Infinite Periodic crystals

von Laue described the X-ray diffraction of crystals by modelling a crystal as a combination of three one-dimensional atomic nets.

In order to avoid destructive interference it is necessary that all pairs of atom have constructive interference.

This means that the waves diffused by any two atoms have a phase $r \mid \mathcal{A}$

$$
r' - r = a cos(\theta) - a cos(\phi) = h \lambda
$$

$$
r' - r = a \cdot (S-S_0) = h \lambda
$$

Tiodic crystals
by modelling a crystal as a combination of three
destructive interference it is necessary that all pairs
instructive interference.
the waves diffused by any two atoms have a phase
 $n\lambda$
 $\cdot = a \cos(\theta) - a \cos(\phi)$ Extending in three dimensions, diffraction occurs when the difference between scattered and incident wave vectors satisfies the condition along each of the three directions, thus with a "triplet" of integers (h, k , l)

Diffraction from crystals

A different viewpoint of the same phenomenon is given by Bragg. Diffraction is regarded as a simple reflection of the photon on a given surface of **Diffraction from crystals**
A different viewpoint of the same phenomenon is given by Bragg. Diffraction is regarded as a simple reflection of the photon on a given surface of
the crystal. However, we must consider that the accounted for.

Diffraction from crystals

Polyatomic system

Periodic system

The reciprocal space

Example 2
We need a simplified way to handle planes in order to describe
We need a simplified way to handle planes in order to describe
diffraction phenomena from crystals (having in mind Bragg formalism)
and predict dif e reciprocal space
We need a simplified way to handle planes in order to describe
diffraction phenomena from crystals (having in mind Bragg formalism)
and predict diffraction conditions
A family of planes can be simply rep **e reciprocal space**

We need a simplified way to handle planes in order to describe

diffraction phenomena from crystals (having in mind Bragg formalism)

and predict diffraction conditions

A family of planes can be sim

The reciprocal space

Conditions:

It follows that: $V = 1/V^*$

The Ewald sphere

The Ewald sphere: Bragg technique

The Ewald sphere: Bragg technique

The Ewald sphere: Laue technique

The "lens"

The phase problem

Società
Italiana Luce di Sincrotrone

Phasing the reflections is the main problem of a crystal structure solution
of a crystal structure solution
of a crystal structure solution

$$
\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} |\mathbf{F}(\mathbf{H})| e^{2\pi i \varphi_H} e^{-i2\pi \mathbf{H}\mathbf{r}}
$$

The truncation problem

The series termination and
The series termination and
data incompleteness is
also a problem |||||||||||||||||||||||||||||||||||
The series termination and
data incompleteness is
also a problem The series termination and
data incompleteness is
also a problem
 $\mathbf{r} = \frac{1}{n} \sum_{i} \mathbf{r}(n) \int e^{2\pi i \varphi_{H,0} - i2\pi H r}$

The series termination and
data incompleteness is
also a problem

$$
\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{H}} |\mathbf{F}(\mathbf{H})| e^{2\pi i \varphi_H} e^{-i2\pi \mathbf{H} \mathbf{r}}
$$

The diffracted intensity

Ideal, real, twin and powder crystals

Ideal single Crystal (perfect, without boundaries)

Real (imperfect) single crystal: composed of domains (approx. radius 10^{-4} cm); The ideally imperfect crystal has a statistically distributed mosaicity

Elettra Sincrotrone Trieste

The twinned crystal consist of more than one real crystals fused in a single particle (intergrowth or contact twins are possible)

A powder sample consists of several (small) real crystals (separated from each other)

Diffraction from real single crystals

 $\mathcal{N}\mathcal{N}$

Single crystal

The *mosaicity* causes the broadening of diffraction spots

WW

Diffraction from twin crystals

Diffraction from powders

Diffraction from powders

Diffraction from powders

Laboratory single crystal diffractometer

Large scale source diffractometer

Brighter sources Tunable radiation energies Micro-focusing

How to solve a crystal structure?

How to solve a crystal structure?

How to solve a crystal structure?

The structural model

Using structure solution methods like Direct methods or Patterson method combined with Fourier synthesis we are The structural model

Using structure solution methods like *Direct methods* or

Patterson method combined with Fourier synthesis we are

able to get an approximate model for a crystal structure.

This model consists of th

The structural model
Using structure solution methods like Direct methods or
Patterson method combined with Fourier synthesis we are
able to get an approximate model for a crystal structure.
This model consists of the fra each atom in the unit cell, at which its spherical electron density distribution is centered, and a description of the movement of the atom about its mean position as a harmonic oscillator characterized by the displacement parameters u_{ij} .

Based on this model we may calculate the structure factors $F_{model}(\mathbf{H})$ $\left\langle \begin{array}{c} u_{31} \\ v_{12} \end{array} \right\rangle$ associated to each scattering vector H as

$$
F(\mathbf{H}) = \sum_{m} f_m(H) \exp(2\pi i \mathbf{H} \cdot \mathbf{r}_m) T_m(\mathbf{H})
$$

Friedel's law and its violation Friedel's law and its violation

F(H)|² = $F(H)F^*(H) = \left(\int \bar{\rho}(r) \exp(2\pi i H \cdot r) dr\right) \left(\int \bar{\rho}(r) \exp(-2r) \text{Friedel, G. (1913). } C.R. \text{ Acad. Sci. Paris, 157, 1533-}\right)$ **('s law and its violation**

((H) = $\left(\int \bar{\rho}(\mathbf{r}) \exp(2\pi i \mathbf{H} \cdot \mathbf{r}) d\mathbf{r}\right) \left(\int \bar{\rho}(\mathbf{r}) \exp(-2\pi i \mathbf{H} \cdot \mathbf{r}) d\mathbf{r}\right) = |F(-\mathbf{H})|^2$

Friedel, G. (1913). *C.R. Acad. Sci. Paris,* 157, 1533-1536
 $\mathbf{r}_{\text{term}}(\mathbf{H},$

Friedel, G. (1913). C.R. Acad. Sci. Paris, 157, 1533-1536

The structural model

The term T_i accounts for the fact that the scattering of an atom at rest is affected by its thermally induced motion about its mean position.

For an anisotropic motion T_i becomes more complicated

 $2 \mathbf{H}^T \mathbf{H}$

The so called anisotropic displacement parameters u_{ij} are the elements of a The term T_i accounts for the fact that the scattering of an atom at rest is affected by its thermanduced motion about its mean position.

For an anisotropic motion T_i becomes more complicated
 $T_m(\mathbf{H}) = e^{-2\pi^2 \mathbf{H}^$ The term T_i accounts for the fact that the scattering of an atom at rest is affected by its thermally
Induced motion about its mean position.

For an anisotropic motion T_i becomes more complicated
 $T_m(\mathbf{H}) = e^{-2\pi^2 \math$ vibration or displacement ellipsoid with the three principal axes $\mathsf{U}_1, \,\mathsf{U}_2$ and U_3 .

The structural model: refinement

The model coming out from structure solution, as already mentioned, is approximate. How could we improve it? **as e.g. the structural model: re**
The model coming out from structure solution, as alrea
In crystallography this model is improved by the so-ca
We may calculate from our approximate model the inter-
The scale factor k is ௗ =

In crystallography this model is improved by the so-called least squares technique.

We may calculate from our approximate model the intensities I_{model}

$$
I_{model}(\mathbf{H}) = \frac{1}{k} (F_{model}(\mathbf{H}))^{2}
$$

The scale factor k is needed to scale our model intensities to the measured intensities which depend on many things es technique.

H))²

sured intensities which depend on many things

weighted squared deviations between
 $w(\mathbf{H}) = \frac{1}{\sigma^2(I(\mathbf{H}))}$ que.

Insities which depend on many things
 $\frac{1}{2(I(H))}$
 $\frac{1}{2(I(H))}$

The quantity which we minimize in least squares is S, the sum over all weighted squared deviations between I_{obs} and I_{model}

From each of the standard form of the standard form.

\nFind the standard form of the standard form of the standard form of the standard form.

\nFind the standard form of the standard form of the standard form.

\nIn order (H) =
$$
\frac{1}{k} \left(F_{model}(\mathbf{H}) \right)^2
$$

\nbeeded to scale our model intensities to the measured intensities which depend on the crystal.

\nminimize in least squares is *S*, the sum over all weighted squared deviations between the standard form of the standard form.

\n
$$
S \sum_{\mathbf{H}} w(\mathbf{H}) \left[I_{obs}(\mathbf{H}) - \frac{1}{k} | F_{model}(\mathbf{H})|^2 \right]^2
$$

\nwhere $W(\mathbf{H}) = \frac{1}{\sigma^2(I(\mathbf{H}))}$

\nwhere $V(\mathbf{H}) = \frac{1}{\sigma^2(I(\mathbf{H}))}$

\nwhere $V(\mathbf{H}) = \frac{1}{\sigma^2(I(\mathbf{H}))}$

\nwhere $V(\mathbf{H}) = \frac{1}{\sigma^2(I(\mathbf{H}))}$

The structural model: refinement

The function S(model parameters) is a complicated hyper surface in ndimensional space, where $n =$ number of parameters. It has an absolute minimum, which corresponds to the best solution, and many relative minima. If our structure model is far away from the correct solution, our shifts in the parameters will be big and thus the linear approximation will not be valid anymore. The structural model: refinement
The function S(model parameters) is a complicated hyper surface in n-
dimensional space, where n = number of parameters. It has an absolute
minimum, which corresponds to the best solution, The function S(model parameters) is a complicated hyper surface in n-
dimensional space, where n = number of parameters. It has an absolute
minimum, which corresponds to the best solution, and many relative
minimum, which

One possible consequence of this is that we may end up in a false

Another possible consequence is that our refinement never goes to a minimum but keeps jumping around in hyperspace, possibly with increasing parameter shifts: The refinement does not converge or even explodes.

In such a situation it may help to damp the parameter shifts

least squares cycles to eventually reach convergence.

 $\{x_i\}$ (variables of the model)

Model quality measurement

The goodness of fit (GOF or GOOF) is the variance of an observation of unit weight . . . should be close to 1 for all reflections grouped either in ranges of resolution or in ranges of F2 **asurement**

 $\begin{aligned} \text{a} \text{surface of an observation of unit weight} \ \text{a.}\ \text{a.}\ \text{a.}\ \text{b.}\ \text{b.}\ \text{c.}\ \text{c.}\ \text{c.}\ \text{c.}\ \text{d.}\ \text{b.}\ \text{d.}\ \text{d.}\ \text{d.}\ \text{d.}\ \text{d.}\ \text{e.}\ \text{d.}\ \text{d.}\ \text{e.}\ \text{d.}\ \text{d.}\ \text{e.}\ \text{d.}\ \text{d.}\ \text{f.}\ \text{d.}\ \text{f.}\ \text{f.}\ \text{g.}\ \$ ^ଶ − ௦ − From the set of the set

$$
G. o. F. = \sqrt{\frac{\sum_{\mathbf{H}} w_{\mathbf{H}} (F_{obs}^2 - F_c^2)^2}{n_{obs} - n_{par}}}
$$

Its expectation value is 1.0.

$$
wR_2 = \sqrt{\frac{\sum_{\mathbf{H}} w_{\mathbf{H}} (F_{obs}^2 - F_c^2)^2}{\sum_{\mathbf{H}} w_{\mathbf{H}} (F_{obs}^2)^2}}
$$

Typical values for wR_2 are 0.1+/-0.09

POLITECNICO MILANO 1863

Model quality measurement

Another often used quality measure is

$$
R_1 = \frac{\sum_H \left| |F_o| - |F_c| \right|}{\sum_H |F_o|}
$$

 R_1 does not have any relation to the theory of least squares and has a not well defined relation to statistical theory. WIOCIET QUZITLY MIEZSUFEMENT

Another often used quality measure is
 $R_1 = \frac{\sum_H |F_o| - \sum_H |F_o|}{\sum_H |F_o|}$
 R_1 does not have any relation to the theory of least squares

well defined relation to statistical theory.

As a ru As a rule of thumb: $wR_2 \sim 2 R_1$

Other criteria:

 $wR_2 \gg R_{int}$: model probably not complete

 R_{int} >> wR_2 : model may be over-parameterised

POLITECNICO MILANO 1863

Beyond conventional models: visualization of the chemical bond through the deformation density

Coppens, P. Science, 1967, 158, 1577–1579.

EX-Ray and Neutron Diffraction

we X-Ray and Neutron Diffraction

Diffraction

Low and neutron-diffraction data were combined for study of

herical symmetry of the atomic charge distributions in the

striction into the **Solution Diffraction**
 Solution Diffraction
 **Constant Solution Constant Server Combined for study of deviationmentry of the atomic charge distributions in the small

time. The results indicate that density has migrate** combined for study of devia-

e distributions in the small

i density has migrated from

gen lone-pair region. Refine-

these bonding effects into

surable errors.

Based on a model refined

from neutron diffraction combined for study of devia-

e distributions in the small

i density has migrated from

gen lone-pair region. Refine-

ethese bonding effects into

sturable errors.

Based on a model refined

from neutron diffr

 $1\sum$ (Fig. 2) $k \leq k_{max}$

Beyond conventional models: The multipolar model

Conventional crystal structure refinement

$$
\rho_{unit \; cell}(\mathbf{r}) = \sum_{m=1}^{Nat \; \in \; dl} \rho_i(\mathbf{r} - \mathbf{r}_i)
$$

Beyond conventional models: The multipolar model

Beyond conventional models: Wavefunctions from X-ray diffraction

Weiss RJ. X-ray determination of Electron Distributions. North- $\begin{array}{l} \hline \text{Richard J. Weiss} \ \hline \text{Nucleon} \text{Richard J. Weiss} \ \end{array}$

Weiss RJ. X-ray determination of Electron Distributions. North-

Holland Publishing Company. Amsterdam. 1966. $\hat{H}-\hat{H}^{HF}+\hat{H}$

Wavefunction models: a molecular wavefunctions adjusted to reproduce the measured X-ray diffraction

$$
\hat{H}\psi = E\psi \qquad \rho(\mathbf{r}) \div |\psi(\mathbf{r})|^2
$$

$$
\big|\psi(\mathbf{r})\big|^2
$$

Approximated Hamiltonian (e.g. Hartree-Fock)

$$
\hat{H}^{HF}\psi^{HF}=E\psi^{HF}
$$

Perturbative approach

$$
\hat{H}=\hat{H}^{\rm HF}+\hat{H}_{\rm err=X-ray\rm-HF}
$$

(1923-2008)

POLITECNICO MILANO 1863

Beyond conventional models: Wavefunctions from X-ray diffraction **The Common Set of the Onal models:**
 Om X-ray diffraction

wavefunctions adjusted Density matrix from X-ray

sured X-ray diffraction

⁰] + $\lambda(\chi^2[\psi^0] - \Delta)$ Density matrix models: Phys. Rev. Lett.

Phys. Rev. Lett.

Phys. Rev. Lett.
 $\$ **Odels:**
 Cay diffraction
 Cay diffraction
 Case of the Case of the Cinton W, Massa L. *Phys. Rev. Lett.* **1972, 29, 1363-136

⁰] − Δ) Density matrix models:** Refin **conventional models:**
 notions from X-ray diffraction

models: a molecular wavefunctions adjusted

models: a molecular wavefunctions adjusted

Models: a molecular wavefunctions adjusted

Models: a molecular wavefunctio Beyond conventional models

Wavefunctions from X-ray di

Wavefunctions $\lim_{\Delta t \to 0} \frac{X - \Delta y}{\Delta t}$

Wavefunction models: a molecular wavefunctions adjuste

to reproduce close enough the measured X-ray diffraction
 $\hat{J}\psi_{$ Beyond conventional models:

Wavefunctions from X-ray diffram

Wavefunctions from X-ray diffram

Wavefunction models: a molecular wavefunctions adjusted

to reproduce close enough the measured X-ray diffraction
 $\hat{J}\psi_{X$

Wavefunction models: a molecular wavefunctions adjusted to reproduce close enough the measured X-ray diffraction

$$
L\psi_{XRW} \qquad \hat{J} = \hat{H}^0[\psi^0] + \lambda(\chi^2[\psi^0] - \Delta)
$$

$$
\chi^2 = \frac{1}{N_r - N_p} \sum_{\mathbf{H}} \frac{\left| \eta \left(F_{\mathbf{H}}^0 \right)^2 - \left(F_{\mathbf{H}}^{X-\text{ra}} \right)^2 \right|}{\left[\sigma \left(F_{\mathbf{H}}^{X-\text{ray}} \right) \right]^2}
$$

Density matrix from X-ray diffraction experiments. N-representability problem

Clinton W, Massa L. Phys. Rev. Lett. 1972, 29, 1363-1366.

 $\int^2 [\psi^0] - \Delta$) **Density matrix models**: Refinement of atomic expansion against Compton profiles

$$
\Gamma(\mathbf{r}',\mathbf{r}) = \sum_{a} \Gamma_a(\mathbf{r}',\mathbf{r}) + \sum_{a,b} \Gamma_{ab}(\mathbf{r}',\mathbf{r})
$$

Gillet J-M. Acta Cryst. 2007, A63, 234-238.

Take home message

-
- **ake home message
• Diffraction is the other side of the coin of microscopy
• X-ray diffraction is the manifestation of the elastic scattering of photo
• Consider the production of the coin of the side of the inner structu ake home message**
• Diffraction is the other side of the coin of microscopy
• X-ray diffraction is the manifestation of the elastic scattering of photons by
• electrons of periodically ordered (crystalline) solids
• The r electrons of periodically ordered (crystalline) solids
- **ake home message**
• Diffraction is the other side of the coin of microscopy
• X-ray diffraction is the manifestation of the elastic scattering of photons by
• The result of X-ray diffraction is not a direct image of the i **ke home message**
 Solution: The other side of the coin of microscopy

X-ray diffraction is the manifestation of the elastic scattering of photons by

Refectroms of periodically ordered (crystalline) solids

The result o the discrepancies with respect to observations. Diffraction is the other side of the coin of microscopy
X-ray diffraction is the manifestation of the elastic scattering of photo
electrons of periodically ordered (crystalline) solids
The result of X-ray diffraction is no
- Diffraction is the other side of the coin of microscopy
• X-ray diffraction is the manifestation of the elastic scattering of photons by
• electrons of periodically ordered (crystalline) solids
• The result of X-ray diff Diffraction is the other side of the coin of microscopy
Chifraction is the other side of the coin of microscopy
X-ray diffraction is the manifestation of the elastic scattering of photons by
electrons of periodically order

