HARD X-RAY IMAGING AND TOMOGRAPHY

P. Cloetens ESRF, the European Synchrotron ID16A

cloetens@esrf.eu

With thanks to: J. Baruchel, S. Bohic, J.C. da Silva, M. di Michiel, D. Karpov A. Pacureanu, F. Peyrin, A. Rack, M. Salome, P. Tafforeau, Y. Yang

X-ray (absorption) imaging is not a new technique....

History: 1895, G.C. Röntgen

First X ray made in public, Hand of the famed anatomist, Albert von Kölliker, made during Roentgen's initial lecture before the Würzburg Physical Medical Society on January 23, 1896.

CRUMPLING OF SILVER NANOWIRES BY ENDOLYSOSOMES STRONGLY REDUCES TOXICITY

CRUMPLING OF SILVER NANOWIRES BY ENDOLYSOSOMES STRONGLY REDUCES TOXICITY

S Lehmann, A E Prada, L Charlet, B Gilbert (LBNL) et al, PNAS, 116, 14893 (2019)

X-RAY IMAGING

X-RAY MICROSCOPY

"Micron scale"

- Tomography
- (Spatial) Resolution
- Absorption / Phase Contrast
- Generalized Tomography
 Fluorescence, Diffraction, SAXS

"Nano-scale"

- Techniques
- Full-field & Dark-field Microscopy
- CDI / Far-field Ptychography
- Nano-probe techniques
- In-line Holography

Inhomogeneous sample

(density, composition, domains, phases, defects, ...)

→ requires a "local" investigation

Two main techniques: Full-field Techniques

with Parallel Beam

Scanning Techniques with Focused Beam

X-RAY MATTER INTERACTIONS USED FOR X-RAY IMAGING

- Combine high spatial resolution on 'thick' samples in 3D
- Multi-modal approach; natural and quantitative contrast from electron density, elements, chemistry and (crystalline) structure
- Access to large volumes (representative elementary volume)
- Dynamics: follow evolving systems with fast 2D and 3D techniques (mostly non-destructive)

JB Forien, P Zaslansky et al. Nano Lett. 15 (2015) 3729

Goal: quantitative imaging:

= *measuring* a given *object* quantity as a function of *space* and *time*

 $\alpha(\mathbf{r},t)$

with $\mathbf{r} = (x, y, z)$ or (x, y)

and α can be $n = 1 - \delta + i \beta$ lattice distortion *u* element concentrations (electron) density ...

Always put a scale bar and color bar!

X-rays well suited:

Weak and linear interaction, but not always (e.g. dynamical diffraction) <u>But</u>

'Poor' instrumentation compared to light / electron microscopy

COMPUTED TOMOGRAPHY (2D \rightarrow 3D)

Volume Rendering

N 2D projections

Reconstructed 3D volume

Lambert-Beer law

 μ , linear attenuation coefficient

LATERAL AND DEPTH RESOLUTION

TOMOGRAPHY PRINCIPLE "WITH HANDS"

To distinguish the 2 : take 2 projections at 90 degrees

RADON TRANSFORM: EXAMPLES

Same projection $\forall \theta$

Radon Space = **sinogram**

amplitude

Gray level

RADON TRANSFORM: EXAMPLES

RECONSTRUCTION: (FILTERED) BACK-PROJECTION

Correct result using: Filtered Back-projection Number of projections: Theory: $M = \frac{\pi}{2}N_x$ Practice: $M \approx N_x$

Absorption/Phase tomography: analytic method, FBP using e.g. Nabu Diffraction/Fluorescence tomography: algebraic methods, MLEM, TV using e.g. ASTRA

Pixel / Voxel size

Often stated as 'resolution' in tomography! Correct sampling requires: $f_{max} < f_{Nyquist} = \frac{1}{2pixelsize}$

Rayleigh Criterion for resolving two adjacent objects

Point spread function - Transfer function $R_{Rayleigh} = c \lambda/NA$ Noise-less world

Abbe criterion:

Resolution depends on **wavelength** and **numerical aperture**. There is an upper limit for a given wavelength.

SPATIAL RESOLUTION (2)

Rose Criterion: influence of noise on spatial resolution Photon statistics and/or dose limit the obtainable resolution SNR > 5 for detection

e.g. tomography (Flannery 87)

$$N_{phot} \propto \frac{D^4}{R^4} \frac{\exp(\mu D)}{[\mu D(\sigma/\mu)]^2}$$

With sample diameter D constant: if $R \downarrow$ then $N_{Phot} \uparrow$ as $(1/R)^4$

Detection Limit:

Smallest object that can be detected will depend on contrast and noise can be $<< R_{Rayleigh}$ especially using phase contrast

Precision:

on the position of an object for example

$$Precision \propto \frac{R_{Rayleigh}}{\sqrt{N_{phot}}}$$

ESTIMATION OF THE 3D SPATIAL RESOLUTION

Edge Profile

ESTIMATION OF THE 3D SPATIAL RESOLUTION

Fourier Shell Correlation

Actually measures the *consistency* of two measurements

Fourier Shell Correlation threshold criteria, J. Struc. Biol. 151 (2005) 250.

$$ext{SC}_{12}(r_i) = rac{\sum_{r \in r_i} F_1(r) \cdot F_2(r)^*}{\sqrt{\sum_{r \in r_i} F_1^2(r) \cdot \sum_{r \in r_i} F_2^2(r)}}$$

ABSORPTION VS. PHASE

Simple transmission

Absorption

Phase

$\delta \propto \text{electron density}$

Dream 1: Low Dose

Increase the energy

Absorption contrast \downarrow replaced by phase contrast

Dream 2: Improve the Sensitivity

Absorption contrast too low high spatial resolution light materials similar attenuation

TRANSMISSION IMAGING

- Weak interaction with matter
- Refractive index *n* (X-rays):

from C. Grünzweig, PhD thesis

- β Absorption index
- photo-electric effect
 Compton scattering
- strong energy dependence
- $\beta = (\lambda / 4\pi).\mu$ linear attenuation coefficient μ $\beta = \frac{r_c \lambda^2}{2\pi V} \sum f_p''$

$\delta-\text{Refractive}$ index decrement

 proportional to electron density

 $\delta >> \beta$ 10⁻⁶ 10⁻⁹

 inversely proportional to energy²

$$\delta = \frac{r_c \lambda^2}{2\pi V} \sum \left(Z_p + f_p' \right)$$

 \approx 1.3 10⁻⁶ ρ λ² ρ in g/cm³, λ in Å

PHASE CONTRAST VS ABSORPTION

Gain of up to a few 1000 !

'Subtraction' of images around a K-edge:

 \rightarrow coronary angiography

 \rightarrow brain permeability

 \rightarrow lung ventilation,

. . .

ABSORPTION: K-EDGE SUBTRACTION IMAGING

Elleaume, Estève et al.

subtraction of images recorded above and below the "absorption edge" of iodine

Tissues display nearly the same absorption

 \rightarrow Iodine is seen

TRANSMISSION THROUGH A SAMPLE

refractive index
$$n = 1 - \delta + i\beta$$

 $\Delta z = e^{ik_{medium}\Delta z} = e^{i\frac{2\pi}{\lambda}} \Delta z} = e^{i\frac{2\pi}{\lambda}} \Delta z} e^{-i\frac{2\pi}{\lambda}} \delta \Delta z} e^{-\frac{2\pi}{\lambda}} \beta \Delta z}$
Transmission function
projection of the refractive index distribution
 $u_{inc}(x,y) = u_0(x,y) = T(x,y)$. $u_{inc}(x,y)$
Amplitude $A(x,y) = e^{-B(x,y)} = e^{-\frac{2\pi}{\lambda}} \int \beta(x,y,z) dz$
 $T(x,y) = A(x,y) \cdot e^{i\varphi(x,y)}$
Phase $\varphi(x,y) = -\frac{2\pi}{\lambda} \int \delta(x,y,z) dz$

PHASE SENSITIVE TECHNIQUES

At zero distance:
Intensity
$$I_0 = |u_0|^2 = I_{inc} \cdot \exp(-\int \mu dz)$$

 \Rightarrow all phase information is lost

⇒ all phase information is lost

SUMMARY PHASE CONTRAST IMAGING METHODS

Interferometry

Differential Phase Contrast Imaging

DIFFERENTIAL PHASE CONTRAST IMAGING

Speckle-based Phase Contrast Imaging

ESRF

DIFFERENTIAL PHASE CONTRAST IMAGING

Speckle-based Phase Contrast Imaging

S. Berujon et al., Phys. Rev.
A 86, 063813 (2012).
K. Morgan et al., Appl. Phys.
Lett. 100, 124102 (2012).

$$\alpha_{x,y} = \frac{1}{k} \frac{\partial \varphi}{\partial x, y} = \frac{v_{x,y}}{D}$$

- 3 complementary image signals:
- Differential phase in horizontal and vertical direction
- Transmission
- Dark-field (scattering)
- <u>M. Zdora</u> et al., J. Instrum. 13, C05005 (2018).

DIFFERENTIAL PHASE CONTRAST IMAGING

Speckle-based Phase Contrast Imaging

<u>M. Zdora</u>, J. Imaging 4, 60 (2018).

- 3 complementary image signals:
- Differential phase in horizontal and vertical direction
- Dark-field (scattering)
- 'Attenuation'

PROPAGATION BASED PHASE CONTRAST IMAGING

In-line Holography Fresnel diffraction

FRESNEL DIFFRACTION IN REAL SPACE

Fresnel Integral (1D)

$$u_D(x) = \frac{1}{\sqrt{i\lambda D}} \int_{-\infty}^{+\infty} u_0(x_0) \exp\left[-i\frac{\pi}{\lambda D}(x-x_0)^2\right] dx_0$$

- Convolution in real space
 Multiplication in reciprocal space
- Small angles paraxial approximation

FRESNEL DIFFRACTION IN REAL SPACE

 In principle: complete object contributes to a point of the image In practice: only finite region: first Fresnel zone

radius
$$r_F = \sqrt{\lambda D}$$

• First Fresnel zone determines the sensed lengthscale Distance to be most sensitive to object with size $a D_{opt} = \frac{a}{2}$

For example at $\lambda = 0.5$ Å (25 keV) $a = 1 \ \mu m \implies D = 10 \ mm$ $a = 40 \ \mu m \implies D = 16 \ m$ • Fresnel Integral becomes Fourier Transform if $\sqrt{\lambda D} \gg$ object size

IMAGING REGIMES WITH COHERENT X-RAYS

SINGLE-BUNCH PHASE CONTRAST IMAGING

0 µs

84 µs

optics

140 µs

single bunch:

- revolution 2.8 μ s ٠
- 4 bunches = 1.4 MHz frame rate
- Approx. 160 ps flash exposure •

Rack, Scheel, Reichert et al., J Synch Rad 21, no. 4 (2014)

GAS-GUN FACILITY AT ID19

*in collaboration with D. Eakins, D.Chapman (University of Oxford, UK)

- Aims at visualizing microscopic processes
 - internal damage
 - cracking and spall,
 - twinning and evolving microstructures
 - shocked induced phase transitions
 - growth instabilities
 - void collapse and densification of porous system

M Olbinado, A Rack

ESRF

The European Synchrotron

PHASE RETRIEVAL

Image(s) ⇒ Object ??? Inverse Problem

Linearization with respect to defocus D

Australian School: K. Nugent, T. Gureyev, D. Paganin

Linearization with respect to object

Flemish School: D. Van Dyck, P. Cloetens, JP Guigay Transfer Function Approach / Focus variation Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen.

Combined in 'Mixed Approach'

JP Guigay, M Langer, R Boistel, P Cloetens, Opt. Lett., 32, 1617 (2007)

- Single distance reconstruction for homogeneous objects
 Valid for short distance, arbitrary absorption (!) and constant δ/β
 Paganin, D. et al, J. Microsc., 206, 33-40 (2002).
- Pro's:
 - Single distance
 - Most correct of simple approaches (arbitrary absorption)
 - Robust: homogeneity assumption has regularizing effect
- Contra's:
 - Weak distance, weak contrast \rightarrow contrast is not optimized
 - Not adapted to very inhomogeneous objects
 - Low-pass filter → resolution is deteriorated

$$\int \mu dz = -\ln \left\{ FT^{-1} \left\{ \frac{FT(I_D)}{\pi \lambda D f^2} \frac{\delta}{\beta} + 1 \right\} \right\}$$

BM18: HIERARCHICAL PHASE-CONTRAST TOMOGRAPHY

Main techniques:

- Hierarchical tomography
- Propagation phase-contrast imaging

Main beamline specifications:

- Energy range:80-240 keV (25-280 in the future)
- 220m long beamline, up to 36m for propagation phase-contrast
- Current sample size 0.5m and 30 kg
- Future sample size up to 2.5m and 300 kg
- High automation level for high throughput (regular improvements)

EBS and refurbishment improvements:

- Smallest possible X-ray source of the EBS
- Beam of 35cm with highest coherence worldwide for high-energy X-ray imaging
- Large pixel range (0.85 120 um)

45m long experimental hutch with large polychromatic beam at high energy

Fourier Transforms of the intensity and phase are linearly related

$$I_{D}(\mathbf{f}) = \delta_{\text{Dirac}}(\mathbf{f}) - 2 \underbrace{\cos(\pi \lambda D \mathbf{f}^{2})}_{\text{max}} \cdot B(\mathbf{f}) + 2 \underbrace{\sin(\pi \lambda D \mathbf{f}^{2})}_{\text{max}} \cdot \varphi(\mathbf{f})$$
amplitude contrast factor phase contrast factor

valid in case of a slowly varying phase, weak absorption

CONTRAST TRANSFER FUNCTIONS

Decreasing linewidth Increasing spatial frequency

The European Synchrotron | ESRF

HOLO-TOMOGRAPHY

1) phase retrieval with images at different distances

Phase map

2) tomography: repeated for ~ 1000 angular positions

 $\begin{array}{l} \text{3D distribution of } \delta \text{ or the electron-density} \\ \text{improved resolution} \\ \text{straightforward interpretation} \\ & \text{processing} \end{array}$

ESRF

P.Cloetens et al., Appl. Phys. Lett. 75, 2912 (1999) JP Guigay, M Langer, R Boistel, P Cloetens, Opt. Lett., 32, 1617 (2007) M. Langer, P Cloetens, A Pacureanu, F Peyrin, Opt. Lett., 37, 2151 (2012)

ABSORPTION VS. PHASE: AL/SI SEMI-SOLID ALLOY

L Salvo, P Cloetens, et al., NIM B, 200 (2003) 273 The European Synchrotron

GENERALIZED TOMOGRAPHY

Courtesy of P. Bleuet

X-RAY FLUORESCENCE TOMOGRAPHY

Back to 1st generation scanner!

3D rendering of a fly ash

3D rendering, fly ash particle

Left : Transmission tomography

Right : Distributions of Rubidium Manganese Iron

Voxel size $3 \times 3 \times 3 \ \mu m^3$.

B. Golosio, et al., J. Appl. Phys. 94, 145-156 (2003) and Appl. Physics Letters, (2004)

X-RAY (POWDER) DIFFRACTION TOMOGRAPHY

P. Bleuet, et al. *Nature Mater* **7**, 468–472 (2008).

OPERANDO CATALYSIS ON ID15A

Phases distribution maps in a catalyst

$CH_4/O_2 = 4/1$ Ni $O_4 = 0$ O_4

Chemical evolution of a catalyst under working conditions

SAXS TENSOR TOMOGRAPHY

PAUL SCHERRER INSTITUT

Scanning SAXS in 3D: A 6D reconstruction

SAXS tensor tomography

Reconstructing 3D real space and 3D reciprocal space

measurements around two axis needed

Marianne Liebi Now at MAX IV

SAXS TENSOR TOMOGRAPHY

PAUL SCHERRER INSTITUT

FED

Scanning SAXS in 3D: A 6D reconstruction

3D reciprocal space map in each voxel modeled with spherical harmonics

Liebi, M. et al. "Nanostructure surveys on macroscopic specimens by small-angle scattering tensor tomography," Nature 527, 349 (2015)

X-RAY MICROSCOPY: FULL-FIELD SETUPS

Parallel beam imaging:

Absorption + Phase + Bragg Dose (in)efficient, ultra fast Resolution limited by *detector*

Full-field microscopy:

Absorption + Phase (+ Bragg) Dose inefficient, fast TXM (Transmission X-ray Microscopy) Resolution limited by optics 2D detector objective sample

X-RAY MICROSCOPY: COHERENT DIFFRACTION IMAGING SETUPS

CDI:

Phase contrast + Bragg Dose efficient, ~fast, less robust Small, isolated object Resolution limited by *coherent flux*

Nishino et al, PRL 102, 018101 (2009)

Ptychography:

Phase contrast (+ Bragg) Dose efficient, slow, more robust 'Extended' object Resolution limited by *coherent flux*

M. Dierolf et al, Europhysics New 39, 22 (2008)

ESRF

The European Synchrotron

FAR-FIELD X-RAY PTYCHOGRAPHY

ESRF

The European Synchrotron

R. Hegerl and W. Hoppe, Ber. Bunsenges. Phys. Chem. 74, 1148-1154 (1970).
P. Thibault, M. Dierolf et al. Science 321, 379-382 (2008).
J. C. da Silva and A. Menzel, Optics Express 23, 33812-33821 (2015).

PTYCHOGRAPHY – IMAGE RECONSTRUCTION

Find the object O(r) and the complex-valued incident illumination P(r) (the probe) consistent with the measured intensities

$$I(\vec{q},\vec{R}) = \left| \int_{-\infty}^{\infty} O(\vec{r}) P(\vec{r}-\vec{R}) e^{-i\vec{q}\cdot\vec{r}} d\vec{r} \right|^2$$

Ptychography Iterative Engine

Figure from M. Dierolf et al., Europhysics New 39 (2008) 22.

Fourier Constraints

Each "view" satisfies each own Fourier Constraint.

Overlap Constraints

Overlapping regions agree and the incident wave field is unique

Redundancy

Redundancy in the data allows to simultaneously reconstruct the probe and the object

THE PTYCHOGRAPHIC PHASE RETRIEVAL IN ACTION

Using Python package Ptypy (collaborative development B. Enders, P. Thibault) <u>https://github.com/ptycho/ptypy</u> (private repository)

THE PTYCHOGRAPHIC PHASE RETRIEVAL IN ACTION

Using Python package Ptypy (collaborative development B. Enders, P. Thibault) <u>https://github.com/ptycho/ptypy</u> (private repository)

"Partial Coherence effects": instabilities of optics and positioning motors, detector PSF > 1 pixel, moderate monochromaticity, vibrations of the sample...

P. Thibault and A. Menzel, Nature 494, 68-71 (2013)

HIGH SPATIAL RESOLUTION NANOTOMOGRAPHY BY PTYCHOGRAPHY

Intel chip, 22 nm technology Resolution: "14.6 nm" Scale bars: 500 nm

X-RAY MICROSCOPY: NANO-FOCUS SETUPS

S(T)XM Scanning (Transmission) X-ray Microscopy:

Micro-analysis Slow Rich, trace elements Phase contrast *FEDS* Micro-fluorescence **2D** detector Micro-diffraction or Focused segmented Micro-spectroscopy X-ray beam detector Resolution limited by focus E sample

Projection X-ray Microscopy or Holography:

Phase contrast Dose efficient, fast Resolution limited by incoherent focus Focused X-ray beam 2D detector

ESRF

The European Synchrotron

COMBINED X-RAY FLUORESCENCE AND PTYCHOGRAPHY

J Deng, D Vine,... Ch Jacobsen Scientific Reports | 7: 445 | 2017

Simultaneous, using Continuous scanning Energy: 5.2keV

Required coherence properties rather different (today) Often preferred to do two successive experiments

A MULTI-TECHNIQUE NANOPROBE: ID16B

GeSn MICRO-DISKS FOR PHOTONIC APPLICATIONS

Homogeneity & order in GeSn μ-disks

XRF mapping

- Sn incorporates homogeneously
- Etching to fabricate micro-disk remove GeSn with low SNconcentration.

Nano XANES

• Sn is substitutional to Ge

٠

 Linear combination fitting: No signatures of metallic precipitates in the SGB. Minor fraction of metallic Sn in the SRB disks

J. Segura-Ruiz et al., submitted

ID16A-NI: NANO-IMAGING BEAMLINE

Nano-Imaging

Quantitative 3D characterization at the nanoscale of the morphology and the elemental composition of specimens in their native state

Beamline characteristics:

ID16A-NI

185 m

- Techniques: fluorescence analysis, in-line phase contrast, near-field ptychography
- Nano-Focus: (12) 25-35 nm
- Energy: 17 keV & 33.6 keV
- Flux: 1.2 10¹³ ph/s & 2.7 10¹² ph/s @ 0.7% in principle...
- Operation: under vacuum, room temperature or cryo workflow

Optics Hutch

34 m

The European Synchrotron

ESRF

X-RAY PHASE CONTRAST

X-RAY FLUORESCENCE

• **Quantitative** 3D reconstructions of $\rho(x,y,z)$, $c_{el}(x,y,z)$

• **Correlative** approaches (Soft X-rays, EM, STED)

Oms dwell-time Phosphorus		Sulfur	Potassium	Zinc
Limit of	1.2 10 ⁻¹⁸ g	3.9 10 ⁻¹⁹ g	3.3 10 ⁻¹⁹ g	1.9 10 ⁻²⁰ g
detection	(22,500 atoms)	(7,300 atoms)	(5,100 atoms)	(180 atoms)
Limit of	2.4 10 ⁻¹⁸ g	8.7 10 ⁻¹⁹ g	7.7 10 ⁻¹⁹ g	3.6 10 ⁻²⁰ g
quantification	(47,700 atoms)	(16,300 atoms)	(11,400 atoms)	(330 atoms)

HOLOGRAPHY: PHASE RETRIEVAL

Least squares minimization of cost functional

 $K = \sum_{m} |I_{m}^{exp}(f) - I_{m}^{calc}[\phi(f)]|^{2}$ P.Cloetens et al., Appl. Phys. Lett. 75, 2912 (1999) P.Schiske, (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen

HOLOGRAPHY: PHASE RETRIEVAL

Single Distance Paganin Multiple Distance Transfer Function amplitude phase TIE -1

<u>2.5 µm</u>

<u>2.5 µm</u>

-2

0

0.5

1

1.5

2.:

2

- Nanotomography of spinal cord in a Multiple Sclerosis mice model
- Regeneration of vascular network and motor neurons after treatment
- Sample size 2.5 x 5 mm, pixel size 130 nm, Epon embedded, Os stained for correlation with TEM

 Image: Second synchrotron

 The European Synchrotron

A. Cedola, A. Uccelli et al., Sci. Rep. 7: 5890 2017 | DOI:10.1038/s41598-017-06251-7

3D DISSECTION OF ALZHEIMER'S DISEASE PATHOLOGY

AMYLOID ANGIOPATHY AND MICROENVIROMENT

AD mouse brain microenvironment

Phase Contrast Nano-tomography at ID16A Micro-CT at Tomcat, SLS

L Massimi, A Cedola et al. NeuroImage, 184 (2018) 490 The European Synchrotron

Future work: evaluate the efficacy of new therapeutic approaches

INTRACELLULAR LOCALIZATION OF POTENT ANTICANCER METALLODRUGS

Cryo 3D Correlative Microscopy (first time)

J Conesa, Y Yang, E Pereiro, A Pizarro et al., Angew. Chem., 59, 1270 (2020)

INTRACELLULAR LOCALIZATION OF POTENT ANTICANCER METALLODRUGS

- Ir metallodrug is exclusively located in the mitochondria
- Triggers effects on cell death-related endogenous metals (Ca and K) **EBS outlook:**
- Time-dependent uptake of drugs in the cellular environment (pseudo 4D)

J Conesa, Y Yang, E Pereiro, A Pizarro et al., Angew. Chem., 59, 1270 (2020)

(C) (D 4D) The European Synchrotron

Cryo 3D Correlative Microscopy

J Conesa, Y Yang, E Pereiro, A Pizarro et al., Angew. Chem., 59, 1270 (2020)
THE POWER OF PHASE CONTRAST ILLUSTRATED ON MOUSE CORTEX TISSUE

RESOLVING NEURAL NETWORKS (CONNECTOMICS)

Connectomics in mouse cortex – complementarity with FIB-SEM & TEM Data collection ~4h

Phase maps

Pixel size 40 nm

Kuan, Maniates, Lee*, Pacureanu* et al. Nat. Neuro. 2020

reconstruction

X-RAY HOLOTOMOGRAPHY ENABLES MULTISCALE IMAGING OF BRAIN VOLUMES WITH EM-LIKE QUALITY

DENSE NEURONAL RECONSTRUCTION IN MILLIMETER SIZED SAMPLES HOW NEURONS CONTROL AND COORDINATE WALKING

- ➤ Drosophila brain → first 3D image obtained with serial-section electron microscopy (Bock et al. Cell 2018). Data collection took ~ 2 years.
- ➤ X-ray holographic tomography → data collection for a brain takes 4 – 24 hours f(voxel size).
- ➤ Legs are nearly impossible to section for EM → X-ray imaging was the only way to access the 3D information.

Automatic reconstruction of neurons connecting VNC (spinal cord) to muscles in the leg of *Drosophila*

HARVARD MEDICAL SCHOOL

Kuan, Maniates, Lee*, Pacureanu* et al. Nat. Neuro. 2020 See also: Azevedo, Lee, Pacureanu, Tuthill et al., Nature 2024

SELF-SUPERVISED DENOISING (ML)

QUANTIFICATION OF DEGRADATION IN LI-ION BATTERIES

Li-NMC

cathode

Fracturing of secondary particles

Heterogeneous fracturing of secondary particles in Ni-rich cathode materials

Quantification by Machine Learning of particle - carbon/binder detachment

Electron density as a proxy for the State-Of-Charge (SOC)

Yang, Liu et al. Adv. Energy Mater. 2019 Jiang, Liu et al. Nat. Commun. 2020

Electron Density vs State-Of-Charge

NMC-CBD detachment

NEAR-FIELD PTYCHOGRAPHY

Near-field ptychography with a structured illumination

M. Stockmar, P. Cloetens, P. Thibault, Scientific Reports, 2013^{The European Synchrotron}

ESRF

A different flavor of transverse diversity

A different flavor of transverse diversity

M. Stockmar et al., Scientific Reports 3, 1927 (2013)

NEAR-FIELD PTYCHOGRAPHY

Object phase

Object

amplitude

Probe phase

Probe amplitude

M. Stockmar *et al.*, Scientific Reports 3, 1927 (2013)

NEAR-FIELD PTYCHOGRAPHY

Successfully extended to (local) tomography!

M. Stockmar, M. Hubert *et al.*, Opt. Express, 23, 12720 (2015)^{The European Synchrotron}

EXPLORING THE RESOLUTION LIMITS ON PHOTONIC CRYSTALS

Single gyroid photonic crystals

(left) Eupholus schoenherri petiti. Image by J. Rupérez. (right) Callophrys rubi. Image by A. Gor.

Visible light microscopy

100 µm

Near-field Ptychography: high-resolution 2D projections

10 nm pixel size

5 nm pixel size

3 nm pixel size

HXCT: 50 nm pixel, overview scan NF-PXCT: 10 nm pixel, high resolution scan work in progress..

ESRF: THE EUROPEAN SYNCHROTRON

Main beamlines involved in X-ray Imaging

ESRF: THE EUROPEAN SYNCHROTRON

Main beamlines involved in X-ray Microscopy

The European Synchrotron | ESRF

