

Società taliana Luce di Sincrotrone

Elettra Sincrotrone Trieste

Tutorial on XAFS data Analysis

Carlo Meneghini

carlo.meneghini@uniroma3.it

A SULL HROTROR

Dipartimento di Scienze Università Roma Tre

"Gilberto Vlaic" XVII School on Synchrotron Radiation: Fundamentals, Methods and Applications Muggia (Italy), 16 - 26 September 2024

The XAS spectrum

XAFS data ANALYSIS: from experimental data to (quantitative) structural information

Software

Mandatory

- XAFS data analysis software (Demeter)
- Curve fit (FitYk)
- Data manipulation (EXCEL, ORIGIN, Gnuplot,)

Useful:

- **Database** of crystallographic structures (WEB)
- Atomic **Structure visualization** programs (VESTA)

XAFS data collection is conceptually simple

File Format: search for the right columns

XAFS data analysis Software

IXAFS organization

IXAS RESOURCES

XAS Research Review

- About Web Magazine
- Current Issue
- Future Issue
- Publishing Policy
- Manuscript Submission
- Manuscript Template
- Editors

News

IXAS Info Plaza

- Events
 Job and Fellowship Info
- FL Info Plaza

Archives

Related Organizations

Links to SR facilities
 Database

Supporting Corporations

XAFS Conferences

Previous XAFS Conferences

Recent Trends

Scientific Trends

XAFS 15 (2012)

XAFS 16 (2015)

XAFS 17

Photo Gallery

Books and Codes
 Miscellaneous
 Standardization

XAFS Standards & Criteria
 Background
 IXAS Strategy toward Standardization

Data Format

Tutorial materials

Demeter

X-ray Absorption Spectroscopy Using Feff and Ifeffit. Windows Users:

Demeter © 2006-2015 Bruce Ravel

- Easy to use (not on Mac-OS!)
- free
- based on FEFF6 and IFEFFIT

bruceravel.github.io/demeter/

Simple and easy to use data analysis software, freeware, based on FEFF6 and IFEFFIT

Download and install it

Google search: demeter EXAFS

http://www.ixasportal.net/ixas/

GnXAS Software

INTRODUCTION to GNXAS

http://gnxas.unicam.it/pag_gnxas.html

The GNXAS package is and advanced software for EXAFS data analysis based on multiple-scattering (MS) calculations and a rigorous fitting procedure of the raw experimental data. The main characteristic of the software are:

- atomic phase shifts calculations in the muffin-tin approximation based on atom selfconsistent relativistic calculations. Account for the neighbors is taken.
- Inclusion of inelastic losses through complex Hedin-Lundqvist potential.
- Calculation of MS signals associated with two, three, and four atom configurations using advanced algorithms.
- Use of an advanced fitting procedure that allows:
 - to fit simultaneously any number of spectra containing any number of edges,
 - to use directly the raw data without any pre-analysis,
 - to account for complex background multi-electron excitation features,
 - to use various model peaks for the pair, triplet and quadruplet distribution functions, including non Gaussian models and extremal cases. In all cases absolute parameters can be fitted,
 - to treat liquid phase or disordered systems and extract reliable g(r) functions in the short range,
 - to perform a rigorous statistical error analysis and plot two-dimensional correlation maps,
 - To provide a flexible scientific tool for EXAFS data analysis where the user has access to every stage of the calculation. GNXAS is not a black box.

The analysis of uncertainties and error bars is a key issue for reliable understanding and discussion of XAFS results.

Normalized XAS $\mu(E)$

1. Remove pre-edge

 $\mu_x t$ is the absorption due to the edge of interest

 α_{bkg} is the absorption due to **everything** except $\mu_x t$

<u>Everything</u> being: other absorption edges, air, sample holder, matrices, chamber windows, etc...

How to get the normalized $\chi(k)$

2. Normalization

$$\alpha_{norm} = 1 + \chi$$

 α_0 is calculated empirically as a smooth curve across the data.

- Requirements for α_0 :
- 1) <u>Smooth enough</u>

not to remove atomic structure features

2) Structured enough

to remove not structural background

All the programs for XAFS data analysis calculate α_0 applying different but equivalent methods

 $\alpha_{exp}(E)$

pre-edge subtractio

normalization μ

structural signal $\gamma(k)$

Fourier Transform

How to get the normalized $\chi(k)$ 3. the **structural EXAFS** signal χ

$$\alpha_{norm} = (1 + \chi)$$

 $\alpha_{exp}(E)$

pre-edge subtraction

How to get the normalized χ(k)4. the photoelectron wave vector k

$$\chi(k) = \frac{1}{k} \sum A_j \sin(2kr_j + \psi_j) \qquad k =$$

$$x = \frac{1}{\hbar} \sqrt{2m_e(E - E_o)}$$

Edge energy is selected (*roughly*)

 $\label{eq:metals} \begin{array}{l} \underline{\text{Metals}}: \text{ at the first inflection point of } \alpha_{\text{nor}} \\ \underline{\text{Oxides}}: \text{ where } \alpha_{\text{nor}} \simeq \textbf{0.5} \end{array}$

It will be refined during the analysis.

→ α_{exp}(E) Qualitative local structure: pseudo distribution function pre-edge subtraction Cu 3. Fourier transform (k-weight) α_o normalization cu_foil_10k.dat in R space structural signal χ(k) cu_foil_10k.dat in k space 0.16 0.5 Fourier Transform 0.14 Magnitude cu_foil_10k.dat 0.4 (_____) 0.12 0.1 0.3 |X(R)|-0.08 0.2 X(k) 0.06 0 0.04 0 0.02 0 -0.1 2 3 5 6 0 02 Radial distance (Å) 0.8 cu_foil_10k.dat 0.6 (A⁻¹) 0.4 0.2 0 k X(k) -0.2 -0.4 -0.6 -0.8 cu_foil_10k.dat in R space -1 -1 2 8 7 cu_foil_10k.dat Magnitude 6 (A⁻³) 6 (A⁻²) 5 2 15-0X XS 3 -2 2 <mark>к</mark>2 -6 2 3 5 6 0 -8 12 0 2 6 8 10 14 16 18 Radial distance (Å) Wavenumber (Å-1)

α_{exp}(E)

pre-edge subtraction

 α_0 normalization

structural signal $\gamma(k)$

ourier Transforn

Qualitative local structure: pseudo distribution function

3. Fourier transform

|FT| shows more <u>intuitively</u> the main structural features in the real space: the FT modulus represents a **pseudo-radial distribution function** modified by the effect of <u>amplitude</u>, <u>phase</u> and <u>mean free path</u> parameters.

Peak positions (phase shift corrected)= > neighbour shellsPeak amplitude and shape= > number and type of neigbours

$$\chi(k) = \frac{1}{k} \sum A_j \sin(2kr_j + \psi_j)$$
$$A_j = S_o^2 \frac{N_j}{R_j^2} |f_j| e^{-2k^2 \sigma_j^2} e_j^{-\frac{2r_j}{\lambda}}$$

 $R_{true} \simeq R_{FT} + 0.5 \text{\AA}$

Check your data:

Inspect kⁿχ(k)

 $k^n\chi(k)$ weighting highlights different features in the spectrum: high (low) n enhance high (low) k-regions

Note: low k-region (k<3) is generally affected by larger inaccuracies and is difficult to analyse due to multiple scattering contributions (XANES-FMS region) and other not linear effects (mean free path)

Check the FT

FT features: Artifacts, distortions, noise, may suggests bad extraction, noise on the data, etc...

i.e.: intense peaks in the low R region (≈ less than 1Å) may signify errors in the extractions $\alpha_{exp}(E)$

pre-edge subtraction

 α_o normalization

structural signal χ(k)

ourier Transforn

Fourier Filtering

Qualitative local structure: pseudo distribution function

Qualitative local structure: pseudo distribution function

Cu₂O

Software

Download Demeter and install it
Start Athena

Starting XAFS data analysis on IOS may be a challenging task !

21/09/2024

Hands-on

https://tinyurl.com/Xafs2024

👼 BiLaFeO_LCA

👼 Cu-complex

👼 ok_Cu_Foil

👼 ok_Fe_foil

👼 Iridium_XANES

https://tinyurl.com/Xafs2024DB

Cu-Complex (Amorphous)
 Cu K edge XAFS (fcc)
 Fe K edge XAFS (bcc)

Structure Visualizers

VESTA Visualization for Electronic and STructural Analysis

http://jp-minerals.org/soft/en/

Google search: Vesta Download

Download it

Cu-Complex Cu_Complex8

- Import files
- Take confidence with the GUI
- Use automatic extraction
- check extraction parameters and procedures
- save files and plots

35				
DFT	simulation			
Cu	0.00000	0.00000	0.00000	0.00000
N	1.77890	0.14844	-1.16253	2.13025
N	1.11941	-0.19745	1.80976	2.13712
Р	-1.32133	1.85547	-0.08482	2.27945
Р	-1.01833	-1.98718	-0.46346	2.28050
Ν	2.90255	0.58244	-0.52071	3.00585
Ν	2.38749	0.30983	1.80623	3.00975
С	2.69897	1.25819	0.74902	3.07059
С	2.22515	-0.50587	-2.24895	3.20390
С	1.11069	-1.11210	2.79534	3.20692
С	-3.10470	1.76240	0.58409	3.61751

Cu-Complex

- Import files

Cu_Complex8.dat

- Take confidence with the GUI
- Use automatic extraction
- check extraction parameters and procedures
- save files and plots

	0.3
File Group Energy Mark Plot Freeze Merge Monitor Help	-0.1
* <untitled> Save A U I</untitled>	
Main window V	-0.3
Current group: Cu_Complex8_Absorption_N.dat Datatype: xmu Freeze	chergy (ev)
File C:\Users\carlo\Desktop\Cu-complex\Cu_Complex8_Absorption_N.dat	R-space
Element 29: Copper \checkmark Edge κ \checkmark Energy shift 0 Importance 1	1
	0.8 -
Normalization and background removal parameters	0.0 F / 1 S
E0 8986.68 O Normalization order () 1 () 2 () 3	S 0.2
Pre-edge range -150.000 💿 to -30.000 💿 🗹 Flatten normalized data	
Normalization range 50,000 O to 800 O Edge step 0.3709005 fix	
	-0.8
Rbkg 10 + k-weight 2 Spline clamps	
	Padial distance (Å)
	Radial distance (A)
Spline range in E 0 to 841.65888 0 high Strong ~	
Standard None	E k R q kq
	E k B a
Forward Fourier transform parameters	
k-range 3,000 (in to 12,863 (in the second s	
arbitrary k-weight 0.5 Dhase correction	00 01 02 03 0 kw
	Plot in R-space ~
Backward Fourier transform parameters	Magnitude Magnitude
K-range 1 O to 3 O dK 0.0 Window Hanning V	
Plotting parameters	Real part Real part
Plot multiplier 1 v-avis offset 0	Imag. part Imag. part
y axis offset	Vindow Vindow

Energy

0.4

k-space

Wavenumber (Å⁻¹)

q-space

Wavenumber (Å⁻¹)

12 14

4 6 8 10

0.8

-0.6 -0.8 0 2 4 6 8 10 12 14

0.8 0.6

0.4

-0. -0.6 -0.

> 0 2

A-2)

Cu_Complex8

1. Cu K edge XAFS

Basic features

- 1. Import data
- 2. E, K, R, Q figures and plot parameters

6

7

8-10

11

Modify extraction parameters

- 3. R_{bkg}
- 4. Edge Energy and step
- 5. Normalization order
- 6. Normalization range
- 7. Spline range

<u>k-Weighting</u>

- 8. FT range
- 9. FT window
- 10. FT weight

Back Fourier

11. Range and window

Athena [XAS data processing]	
File Group Energy Mark Plot Freeze Merge Monitor Help	
* Gold Save A U I	cu_foil_10k.dat
Main window	
Current group: cu_foil_10k.dat 4 Datatype: xmu 3 ze	
File C:\Users\CarloNew\Dropt io_Malu_2015\dati\Cu_Foil\cu_foil_10#:dat	<u>с</u>
Elemen [•] 29: Copper Edge K • Energy shift 0 Importance 1	
Background removal and normalization parameters	
E0 8977.58 O Rbkg 1.0 Flatten normalized data	
Algorithm Autobk - k-weight 2 Normalization order 1 2 3	
Pre-edge range -150.000 (a) to -30.000 (b) Edge step 2.3266765 (c) fix	
Normalization range 150.000 (a) to 2284.890 (b) Spline clamps	2
Spline range in k 0 ito 25.019 iv None -	
Spline range in E 0 o to 2384.8608 high Strong	
Standard None	
Forward Fourier transform parameters	Plotting k-weights
k-range 3.000 o to 23.019 o dk 1 window Hanning ▼	
arbitrary k-weight 0,5 🔲 phase correction	
Backward Fourier transform parameters	Plot in R-space 🔹
R-range 1 O to 3 O dR 0.0 window Hanning -	Magnitude Magnitude
Plotting parameters	Real part 🔿 Real part
Plot multiplier 1 y-axis offset 0	Imag. part Imag. part
	Window
	Rmin 0 Rmax 6
Imported cu_foil_10k.dat from C:\Users\CarloNew\Dropbox\Seminario_Malu_2015\dati\Cu_Foil\cu_f	foil_10k.dat

21/09/2024

Note:

21/09/2024

Always save data and project for future use you have many options!

Crystallographic structures DBs

http://www.webelements.com/

- Crystallography Open Database (COD) www.crystallography.net
- WWW-MINCRYST

database.iem.ac.ru/mincryst/

- American Mineralogist Crystal Structure DB
- rruff.geo.arizona.edu/AMS/amcsd.php
- ICSD: inorganic chemistry database (guest) FIZ Karlsruhe
- Google Scholar
- http://www.webelements.com/

Chemical bonds locally preserve also in disordered phases distances and angles like the crystallographic counterparts

4. Fe (bcc) and Cu (fcc) XAFS

Compare Cu and Fe EXAFS data: shows the effect of different crystallographic structure

21/09/2024

XAFS data analysis: Overview

The EXAFS standard formula

$$\chi_j(k) = \frac{1}{k} \frac{A_j(k, R_j)}{k} \sin\left(2kR_j + \phi_j(k)\right)$$

$$\frac{A_j(k,R_j)}{R_j^2} = \frac{S_o^2 N_j}{R_j^2} |f_j(k,R_j)| e^{-2k^2 \sigma_j^2} e^{-\frac{2R_j}{\lambda}}$$
$$k = \frac{2\pi}{\lambda_e} = \hbar^{-1} \sqrt{2m_e(E-E_o)}$$

parameters

λ

 $f_i(k, R_i)$ = photo-electron scattering amplitude

- $\phi_i(k)$ = photo-electron scattering phase
 - = photo-electron mean free path
- S_o^2 = many body losses
- E_o = Edge energy shift

Structure

- N_i = multiplicity (coordination number)
- *R_i* = half path length (coordination distance)
- σ_j^2 = variance of the path length distribution (Mean Square Relative Displacement: MSRD)

Structural model & Data refinement

We will analyze Cu Complex8 EXAFS

* This feff6 file was generated by Demeter 0.9.26 * Demeter written by and copyright (c) Bruce Ravel, 2006-2018 HOLE 1 1.0 * FYI: (Cu K edge @ 8979 eV, 2nd number is S0^2) CONTROL 1 1 1 1 0 0 PRINT 1 0 Ν RMAX 7.0 POTENTIALS Ν * ipot Z tag 29 Cu Ν 3 15 📝 feff_Cu8.inp С Ρ ∐ feff_Cu8_noH.inp ATOMS * this list contains 131 atoms distance Х ipot tag V 0.00000 0.00000 **Cu38** XYZ_Cu8.xyz 0.00000 0.00000 1.77890 0.14844 -1.16253 1 2.13025 N1.1 1.11941 -0.19745 1.80976 1 N3.1 2.13712 XYZ_Cu8_NoH.xyz -1.321331.85547 -0.08482 3 P2.1 2.27945 -1.01833 -1.98718 -0.46346 3 P1.1 2.28050 3.00585 2.90255 0.58244 -0.52071 N2.1

feff_Cu8_noH.inp

0.30983

1.80623

N4.1

3.00975

2.38749

Start Arthemis

better on a larger monitors!

2: add model structure (cif or simple pair)

Artemis (EXA	FS data analysis] - <untitled></untitled>											
GDS Plot	Fit Plot Help Data sets Add Hide "cu foil 10k.dat"	Feff calcula	tions Add	N F	ame ït descr	Fit 1 ription				📔 Fit space: 🔘 k		Save
i Histo				🎍 Artemi	s [Feff	f] Atom	s and Feff			N		_ _ x _
loomo to Art	Demotor 0.021 convicts 2006 2015 P	nuce Pauel - uning ife	ffit 91 countrat	I Rer	name	Ŷ	Discard	🏈 Fef	f in Demet	er 🔒 Feff do	c	9
ICOME TO AIR	anis — Demeter 0.3.21, copyright 2000-2015 bi	uce Navel — using ite	ant & grupiot	🚓 At	oms		Feff	Paths	🗞 Patł	h-like 👹 Cor	nsole	
١.	Run Atoms			Inen fil	. 53]		E		
II.	check paths			Titles	C 341	re uc	B)			gace		C)
.	Run Feff			Copper Cu			calcul ampli	ate	aano	1		Scattering Path list
IV.	look at the pa	th list	A) for crysta	ls	icsd_	4349	nhase	s fo	r nat	hs		Γατητιστ
			generate a	G	iroup K 🔻	F r Sty	in the	clu	ster	Β <u>3,(</u> β 90	51505 C	3.61505 90.
	C Rename V Discard V Feff in De	Path-like	local cluster		consist	tency	Rscf 5.0		-Radial di	stances		
	🌾 👸 💭 🐥 🧯 Open file Save file Clear all Template Rur	Feff		Margin	n: 0.(03	Beta: 3		Cluster s	ize 5.422575	Longest path	5.0
	Name: icsd_43493_Copper Feff input file 1 29 Cu	Margin: 0.03	Beta			Add a	site		Shift vec	tor 0	0	insert
	ATOMS * this list * x y z ipc 0.00000 0.00000 0.00000 0	contains 55 atoms ot tag distan) Cul 0.000	10e 10		Core	EI.	x		у	z	Tag	
	1.80753 1.80753 0.00000 1 -1.80753 1.80753 0.00000 1 1.80753 -1.80753 0.00000 1 -1.80753 -1.80753 0.00000 1 -1.80753 0.00000 1.80753 1 -1.80753 0.00000 1.80753 1 0.00000 1.80753 1.80753 1 0.00000 -1.80753 1.80753 1	L Cul.1 2.556 L Cul.1 2.556	33 33 33 33 33 33 33 33	1 2 3		Cu	0	0		0	Cul	
	1.80753 0.00000 -1.80753 1 -1.80753 0.00000 -1.80753 1 0.00000 1.80753 -1.80753 1 0.00000 -1.80753 -1.80753 1 3.61505 0.00000 0.00000 1 -3.61505 0.00000 0.00000 1 0.00000 3.61505 0.00000 1	L Cu1.1 2.556 L Cu1.1 2.556 L Cu1.1 2.556 L Cu1.1 2.556 L Cu1.2 3.615 L Cu1.2 3.615 L Cu1.2 3.615	33 33 33 33 55 55 55	4 5 6								

2: drag and drop relevant paths to the data window

2: Define parameters

3: Define parameters

👔 Artemis [EXAFS data analysis] - <untitled></untitled>						
File Monitor Fit Plot Help						
GD Data sets		Feff calculations		Name Fit 1	Fit space: 🔘	k 💿 R 🔘 q 🛛 Save
Add			Add	Fit description		
Jour						V History
	👱 Arte	emis [GDS] Gu	ess, Def, Set param	leters	N	- Show log
Welcome to Artemis – Demeter 0.9.21, copyright 2006-201	5 Bi				<u></u>	
		Туре	Name		Math expression	
	1	guess	So2	0.8	Note:	
3	2	guess	De_0	0.0	Note:	
soloct rofinament	3	guess	dr_1	0.0	Initialize to >0	
Select Termement	4	guess	ss_1	0.003	the σ^2 paramet	ors
pram., plot, etc	5	guess	dr_2	0.0	the o paramet	C13
LISE CDS button	6	guess	ss_2	0.003		
USE GDS DULLON	7	guess	dr_3	0.0	Noto	
	8	guess	ss_3	0.003	NOLE	•
	9	guess	dr_4	0.0	Constraint to	physical
	10	guess	ss_4	0.003	mooning st	ructural
	11	guess	ss_41	0.003	meaning su	uctural
	12	guess	ss_42	0.003	parameters (es	. MS paths)
						•
	4					

3: Define parameters

Cu_Complex8.dat in R space

4: FIT

Indepe	endent poi	ints	: 10	.335937	5			
Number	of varia	ables	: 5					
Chi-so	Juare		: 90	7.16682	22			
Reduce	d chi-squ	lare	: 17	0.01076	61			
R-fact	or		: 0.	0179542				
Number	of data	sets	: 1					
Usersin		00/100			- ADOE	706		
****	Note: har	ninago is		tic par	e - #Dor amatar a	k blunde ko	****	
*****	NEVED	be report	ed in a	nublicat	tion	NEVERI X	***	
	THE VER	NC TOPOLO	III G	Publica	01011	LALS Y LEEN -		
quess	parameter	s:						
DE C)	=	-7.33133	652	# +/-	4.43267763	[0]	
Dr_1	L	=	-0.03011	728	# +/-	0.02457603	[0]	
ss_1		=	0.01171	751	# +/-	0.01516697	[0.003	00]
Dr_2	2	=	-0.05100	508	# +/-	0.01036517	[0]	
SS_2	2	=	0.00513	951	# +/-	0.00188231	[0.003	00]
Correl	ations be	etween var	iables:					
		ss_1 & c	ie_0		> -	-0.9224		
		35_2 & S	35_1		> -	-0.9072		
		35_2 & C	1e_0		>	0.0030		
		ur_2 & 0	1e_0			0.5490		
All of	her corre	lations b	helow 0.4			-0.5275		
		1001010						
	N	S02	sigma	^2 e0	del	lr Reff	R	
	2.000	1.000	0.01172	-7.331	-0.0301	12 2.13370	2.10358	
	2.000	1.000	0.00514	-7.331	-0.0510	01 2.28000	2.22900	

Note: Check modulus and real(imaginary) parts

5: Always save best fit and output files

🔔 Arter	nis [EXAFS data analysis] - <untitl< th=""><th>ed></th><th></th><th></th><th></th><th></th><th></th><th></th></untitl<>	ed>						
File	Monitor Fit Plot	Help		Feff calculations		Eitensen Ok @R Og		
	Open project or data	Ctrl+o		Add	Fit description	Fit space: O K O K O Y	Save	F#
	Recent files	N *					*	FIL
	Save project	Ctrl+s						listen
	Save project as							Show log
1	Save current fit		Ray	avel — using ifeffit & gnuplot				
	Import	Þ	L,					
	Export	+	Ŀ.					
	Edit Preferences		i.					
	Close	Ctrl+w						
	Exit	Ctrl+q						

6: Check your results and your hypothesis about local atomic structure... if mismatches check hypothesis, extraction, quality of the data...

2': generate crystallographic model structure

Artemis [EXAFS data analysis] - <untitled></untitled>				_ D X
File Monitor Fit Plot Plot Data sets Add Plot Hide "cu_foil_10k.dat"	f calculations Add	Name Fit 1 Fit description	Fit space: O k O q Save	Fit
		Artemis [Feff] Atoms and Feff	eff in Demeter	9 X
elcome to Artemis — Demeter 0.9.21, copyright 2006-2015 Bruce Ravel —	using ifeffit & gnuplot	Atoms Feff 🙀 Paths	Console	
II. check paths III. Run Feff		Open file Save data Export Clear all Titles Copper Cu	Run Atoms Aggregate	*
IV. look at the path lis	st A) generate a local cluster	ne icsd_43493_Copper ce Group Fm -3 m e K Style Feff6 - elem elf-consistency Rscf 5.0	Lattice Constants A 3.61505 B 3.61505 C 3.61505 α 90. β 90. γ 90. Radial distances	
		Margin: 0.02 Beta: 3 Add a site	Cluster size 5,422575 Longest path 5,0 Shift vecto 0 0 0 inse	ert
A) input the unit cell		Core El. x 1 Image: Constraint of the second s	z Tag Cul	st
parametersand cluste	er size	5 include	the longhest distance you expec analyze	t to

.

The Pre-edge region

caused by electronic transitions (mainly dipole) to <u>empty bound states</u> near the Fermi level.

All_L3_norm_XANES.nor

0. Load, manage and save normalized spectra (Athena)

1. Start Fityk

🗲 Fityk 1	.3.1							
Session	Data	Funct	ions	Fit	Tools	GUI	Help	
Qiv	2	웄	Q	Q	Ð,	Q	٩,	Ģ

2. Load the normalized spectrum

Session	Data	Functions	Fit	Tools	GUI	Help
		Quick Load F	ile		Ctr	I-O
•••••••		Load File			Ctrl	-M

3. Select the Edge region

All_L3_norm_XANES.nor

All_L3_norm_XANES.nor

Check the residual

We fitted the XANES region at L_3 and L_2 edges with sigmoid function plus two Voigt peaks representing the transitions 2p-5d_{3/2} and 2p-5d_{5/2}

XANES change slightly from Sr1 to Sr3 to Sr5 pointing out a progressive widening of the t_{2g} - e_g energy difference

Edge region: a valuable fingerprint for chemical speciation

A. Vairavamurthy / Spectrochimica Acta Part A 54 (1998) 2009-2017

chemical speciation of Sulphur in humic substances

19.02.2022

Analysis of the XANES: chemical speciation in

mixtures

Linear Combination Analysis (LCA)

Linear Combination Fit (LCF)

Arsenic uptake by natural calcite: An XAS study

Available online at www.sciencedirect.cor

Geochimica et Cosmochimica Acta 75 (2011) 3011-3023

ScienceDirect

Geochimica et

Cosmochimica

Acta

www.elsevier.com/locate/gca

F. Bardelli^a, M. Benvenuti^b, P. Costagliola^{b,*}, F. Di Benedetto^{b,c}, P. Lattanzi^d, C. Meneghini^e, M. Romanelli^e, L. Valenzano^f

ELSEVIER

Analysis of the XANES: chemical speciation in

mixtures

Magnetic properties of La doped Bi_{1-x}La_xFeO₃ improves doping with La till x~0.2 then M suddenly drops down.

Why?

Above x~0.2 LaFeO₃ phase separate out (solution limit) worsening the overall property of the system

ıdra Reddy, Guiliana Aquilanti, Ajay Gupta Pap. No.: Title : Authors :

Data on: LCA-BiLaFeO

- Start Athena
- load all the files (columns 1,2)

Select ra	Select range						
	1	2	3	4	5		
Energy	۲	۲	۲	۲	\odot		
Numerator		V					
Denominato	r 📃	b	3				

Compare spectra with the end compounds

Check for data alignment

Compare spectra with the end compounds

	M Athena [AAS data processing]	
	File Group Energy Mark Plot Freeze Merge Monitor Help	
	* <untitled> Save A</untitled>	
	Linear combination fitting	▼ BioLa20FeO3.jmp
/lain window	Fitting space	BiFeO3.jmp
/ain window	Fit range: -20	k)
alibrate data		
lign data	Standards Fit results Combinatorics Sequence	
epin data epitch and truncate data	Standards Weight E0 Fit E0 Required	
mooth data	1: BiFeO3.jmp 0.500 0 🗸	A
onvolute and add noise to data	2: LaFe03 imp 0.500 0 V	
econvolute data		
Aulti-electron excitation removal	BI	_{.5} La _{0.5} FeO ₃ =
opy series		.44 BiFeOa
lata summation		
inear combination fitting	+ ($1.56 \text{ La}_0 \text{FeO}_3$
rinciple components analys	[] from 7407 411 to 7157 411	
eak fitting	E) from /10/.411 to /15/.411	Rifol af0Fa0Q2 imp
og-ratio/phase-difference a Fit included 118 data points and 3 variables	and approximately 37.528	LCF fit –
measurements		residual –
Weights sum to 1: yes		
Weights forced between 0 and 1: yes		
Overall eU snift used: no	Sec. 9.8	
R-factor = 0.0001869		
Chi-square = 0.00614		
Reduced chi-square = 0.0000534	Ĕ 0.4	·
standard unight -0	<u>9</u> 0.2	· - J
. standard weight eU		
	.034)	
. BIFeO3.jmp 0.443 (0.008) -0.008		

Compare spectra with the end compounds

Ab-Initio XANES modelling

Thanks for...

Carlo Meneghini

carlo.meneghini@uniroma3.it

16-26.09.2024