

Elettra Sincrotrone Trieste

Infrared spectroscopies with synchrotron radiation and free electron lasers

Part II

THz studies with Storage Rings and Free Electron Laser radiation

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ²

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

<mark>Elettra</mark> Sincrotrone Trieste

The Terahertz Gap

1 THz ~ 1 ps ~ 300 μm ~ 33 cm $^{-1}$ ~4.1 meV ~ 47.6 ^{o}K

Figure 1. Schematic of the electromagnetic spectrum showing that THz light lies between electronics and photonics.

G. Williams, Rep Prog Phys (2006)

<mark>Elettra</mark> Sincrotrone Trieste

Properties of THz light

Non-ionizing

safe use on living people/animals, non-destructive for biological samples

Highly penetrating

sees through many materials, as packaging, clothing, walls

Chemical specificity

distinguishes between different plastics, drugs, explosives

High contrast

between strong (metals, water) and weak (plastics, tissues) absorbers

High-speed communications

1000 times faster than GHz

...the main drawback is spatial resolution ~ mm

THz light and blackbody radiation

Technological applications

Pharmaceutical

Fig. 8. visible image of sample with four pellets containing different chemicals: (1) lactose, (2) aspirin, (3) sucrose, and (4) tartaric acid.

Quality control

Figure 3. Front and back side of a chocolate bar after artificial contamination with a stone, a M2 metal screv and a glass splinter.

Medical imaging

Table-top THz sources

Monochromatic Sources

Broadband Sources

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 9

Femtosecond THz sources

P. Dumas, M.C. Martin, G.L. Carr 2020

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

THz Spectroscopy

Superconductivity Collective excitations Multiferroics Heterostructures Metamaterials Plasmonics

Graphene 2D chalchogenides Black Phosphorus Protein Folding Amyloid fibrils Isomers

Polar liquids Hydrogen bonds Van der Waals interactions Solutions

THz modes in water

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ¹⁴

Hyerarchical structure of proteins

THz Spectroscopy of proteins

F. Piccirilli et al., Biophysical Chemistry 2015

I. Lundholm et al., RSC Adv. 2014

High Resolution Spectroscopy

J.-B. Brubach et al., 2010

Superconductivity

Energy

(Maglev)

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ¹⁹

BCS Superconductors

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ²⁰

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

Coherent Synchrotron Radiation

Dedicated Machine Mode:

"Low α " Optics at BESS

- Bunch shortening down to and below the mm-range
- Emission in the FIR range is drastically enhanced:

$$I = I_{incoh} + I_{coh} = Ni(1 + Nf_v)$$
$$f_v = \left| \int n(z) e^{i\pi \cos(\theta)z} dz \right|^2$$

Courtesy of U. Schade

Coherent Synchrotron Radiation

"bursting" mode

- high power CSR
- very noisy
- energy range: 2 50 cm⁻¹
- gain of ~10⁸

"steady state" mode

- low noise CSR
- energy range: 2 30 cm⁻¹
- gain of ~10⁴

Bursting

Venturini, WarnocK SLAC

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ²³

Microbunching and free-electron-lasers

IR/THz low gain free-electron-lasers

Low-gain FELs with optical cavity

- UCSB (USA)
- Budker Institute (Russia)
- CLIO (France)

. . .

- FELIX / FLARE (Netherlands)
- FELBE (Germany)

 $\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$

Upon one passage in the undulator, radiation grows by a few percent \rightarrow Several passages are needed before reaching saturation

 $λ=100 \ \mu m$ K~1 E ~10 MeV E ~ 1 GeV γ ~ 20 γ ~ 2000 $λ_{U}$ ~ 50 mm $λ_{U}$ ~ 500 m !!!

From DESY-FLASH brochure

... a recap

Zhukowsky, 2015 Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ²⁶

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 27

THz superradiant sources in LINACs

$$I = I_{incoh} + I_{coh} = Ni(1 + Nf_v)$$

$$f_v = \left| \int n(z) e^{i\pi \cos(\theta)z} dz \right|^2$$

$$A_f = \frac{I_{coh}}{I_{incoh}} = Nf_v$$

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

The FERMI seeded FEL

nature ARTICLES photonics PUBLISHED ONLINE: 23 SEPTEMBER 2012 | DOI: 10.1038/NPHOTON.2012.233 nature photonics PUBLISHED ONLINE: 20 OCTOBER 2013 | DOI: 10.1038/NPHOTON.2013.277

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet → 100-20 nm First user exp. Dec 2012

Two-stage seeded soft-X-ray free-electron laser \rightarrow 20-4 nm First user exp. July 2016

ARTICLES

Transition Radiation

Transition Radiation occurs when relativistic electrons cross the boundary between two media of different dielectric constant

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ³⁴

Outline

The THz spectral range

THz spectroscopy with Synchrotron Radiation

Accelerator-based Coherent sources of THz light

TeraFERMI – the THz beamline at FERMI

THz studies with FELs

THz pumping

THz radiation is non-ionizing, highly penetrating, and provides high chemical specificity

THz light couples to electronic, vibrational and magnetic excitations

Optical pump

THz pump

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ³⁶

Elettra Sincrotrone Trieste

THz control of matter

Nucleae/lattice

Nonlinear phononics Macromolecules Molecular alignment Reaction pathways

Electrons

Impact ionization Intervalley scattering Zener tunneling Franz-Keldysh

Spins

Ultrafast magnetic switching Precession

1 MV/cm ~ 0.3 Tesla

Silberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 37

Fluence-dependent spectroscopy

THz nonlinearities in graphene

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 40

THz nonlinear properties of Bi₂Se₃

Andrea Perucchi - «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 - Muggia 41

THz Plasmonics on Bi₂Se₃

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 42

Fluence-dependent THz properties

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 43

- Normal incidence geometry
- Simultaneous measurement of reflectance and transmittance
- Terahertz Kerr configuration also available

THz control of the O₂ defect state in TiO₂

Chemical doping arising from oxygen vacancies induces the creation of in-gap defect states (DS)

ARPES measurements confirm the existence of both localized (IG) and delocalized (2DEG) electronic states with Ti³⁺ and Ti⁴⁺ character, respectively.

Using THz to control and modulate on ultrafast timescales the photoexcitation of the Defect State

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 46

Narrowband THz

Superradiant undulator TELBE

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 47

THz Higgs modes in superconductors

The Higgs mode does not have any electric charge, electric dipole, magnetic moment, and other quantum numbers. Therefore **it does not couple** to external probes such as electromagnetic fields in the **linear**-response regime"

R. Shimano & N. Tsuji, Ann. Rev. Cond. Mat. Phys. 2020

H. Chu et al., Nat. Comm 2020

Narrowband THz

FELBE

Nanoscale THz phonon polaritons

Near-field images show periodic signals (fringes) parallel to specific flake edges. This reveals PhPs propagating with strongly in-plane anisotropic character.

At 9.22 THz the polariton wavelength is 2.82 μ m << λ o = 32.5 μ m

At 11.7 THz the polariton wavelength is 3.9 μ m << λ o = 26.8 μ m

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia ⁵⁰

Terahertz Irradiation

THz irradiation

THz-induced demethylation

Cancer cells can show enhanced DNA Methylation

F. Piccirilli, M. Pachetti et al. (2021)

TeraFERMI

Intense resonant THz radiation induces DNA demethylation

Andrea Perucchi – «Gilberto Vlaic» XVII School on Synchrotron Radiation - September 42, 2024 – Muggia 52

THz irradiation

Virus inactivation through THz irradiation

RNA modes resonate at THz frequencies

→ Inducing RNA damage while keeping the capsid intact

➔ vaccines

Most plastics are transparent to THz radiation Unbreakable sample holders can be used Virus is sealed within 2 plastic containers

Acknowledgments

TeraFERMI

P. Di Pietro

- J. Schmidt (now @ Uni Nova Gorica)
- N. Adhlakha
- Z. Ebrahimpour (now at TIMEX)
- F. Piccirilli

SISSI-Bio

L. Vaccari G. Birarda F. Piccirilli D. Bedolla M.C. Stani

SISSI-MAT

S. Lupi M. Zacchigna V. Stopponi

THANK YOU

www.elettra.eu