

Structural biology: biocrystallography and an appetizer for cryo-EM

Marco Nardini, Ph.D Dept. of Biosciences University of Milan Marco.nardini@unimi.it

Structural biology

Structural biology targets

Examples of protein targets

- **Catalytic reactions:** <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism
- Transcription factors: protein/DNA interaction
- Cell signaling: receptors
- Immune responses: <u>antibodies</u>
- Molecular transport: carriers for small molecules and/or ions (hemoglobin)
- Membrane channelling: <u>membrane proteins</u> control the flow of small molecule (i.e. ions) through cell membranes

• Viruses

Examples of protein targets

• Catalytic reactions: <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism

- Transcription factors: protein/DNA interaction
- Cell signaling: receptors
- Immune responses: <u>antibodies</u>
- Molecular transport: carriers for small molecules and/or ions (hemoglobin)
- Membrane channelling: <u>membrane proteins</u> control the flow of small molecule (i.e. ions) through cell membranes

• Viruses

Examples of protein targets

• Catalytic reactions: <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism

• Transcription factors: protein/DNA interaction

Cell signaling: <u>receptors</u>

Immune responses: <u>antibodies</u>

 Molecular transport: carriers for small molecules and/or ions (hemoglobin)

 Membrane channelling: <u>membrane proteins</u> control the flow of small molecule (i.e. ions) through cell membrai

• Viruses

Examples of protein targets

• Catalytic reactions: <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism

• Transcription factors: protein/DNA interaction

• Cell signaling: receptors

- Immune responses: <u>antibodies</u>
- Molecular transport: carriers for small molecules and/or ions (<u>hemoglobin</u>)

 Membrane channelling: <u>membrane proteins</u> con the flow of small molecule (i.e. ions) through cell men

Viruses

Examples of protein targets

• Catalytic reactions: <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism

• Transcription factors: protein/DNA interaction

• Cell signaling: receptors

Immune responses: <u>antibodies</u>

 Molecular transport: carriers for small molecules and/or ions (hemoglobin)

on Contraction of the second s

• **Membrane channelling:** <u>membrane proteins</u> control the flow of small molecule (i.e. ions) through cell membranes

Viruses

Examples of protein targets

• Catalytic reactions: <u>enzymes</u> that catalyze/accelerate biochemical reactions, and are vital for metabolism

• Transcription factors: protein/DNA interaction

• Cell signaling: receptors

Immune responses: <u>antibodies</u>

 Molecular transport: carriers for small molecules and/or ions (hemoglobin)

 Membrane channelling: <u>membrane proteins</u> control the flow of small molecule (i.e. ions) through cell membranes

Applications of structural biology

3D structures of macromolecules allow us to understand **biological processes and interactions** at atomic resolution (i.e. how a particular macromolecule accomplishes its various functions)

- macromolecule to macromolecule interactions
- macromolecule to small molecules (substrates, cofactors, inhibitors, ions ...) interactions
- structural-functional studies on enzymes
- <u>rational drug design</u> (how drug lead compounds interact with their protein targets)
- biotech applications

Structural biology techniques

- Biocrystallography (or macromolecula crystallography, MX)
- Single particle cryo-electron microscopy (or cryo-EM)
- Nucleic magnetic resonance (or NMR)
- Small angle X-ray scattering (or SAXS)

"INTEGRATED" Structural biology

	PROS	CONS	RESOLUTION	
MX	 Any molecular weigth Precise atomistic details 	 High amount of highly pure protein Sample in a crystalline state Statistic structure 	High (1-2 Å)	
Cryo- EM	 Structure in solution Small amount of highly pure protein Acceptable heterogeneity level 	Target above 150 kDaExpensive	Medium/high (2-5 Å)	
NMR	Structure in solutionDynamic structure	 High amount of highly pure (marked) protein Target below 35 kDa Expensive Very slow data processing 	High (1-2 Å)	
SAXS	Structure in solutionDynamic structure	 Highly pure and homogeneous protein No atomistic details 	Low (20 Å)	

Protein Data Bank (https://www.rcsb.org/)

All Statistics

Protein Data Bank (https://www.rcsb.org/)

PDB Data Distribution by Experimental Method and Molecular Type

Copy CSV											
Molecular Type	X-ray∦≣	EM↓↑	NMR∥↑	Multiple methods	Neutron	Other	Total				
Protein (only)	166,454	15,112	12,490	208	77	32	194,373				
Protein/Oligosaccharide	9,618	2,576	34	8	2	0	12,238				
Protein/NA	8,675	4,593	286	7	0	0	13,561				
Nucleic acid (only)	2,864	137	1,505	14	3	1	4,524				
Other	170	10	33	0	0	0	213				
Oligosaccharide (only)	11	0	6	1	0	4	22				
Total	187,792	22,428	14,354	238	82	37	224,931				

Protein Data Bank (https://www.rcsb.org/)

All Statistics

PDB Statistics: Growth of Structures from X-ray Crystallography Experiments Released per Year

Experimental methods such as X-ray crystallography, NMR spectroscopy, and 3D electron microscopy are used to determine the location of each atom relative to each other in the molecule.

Protein Data Bank (https://www.rcsb.org/)

All Statistics

PDB Statistics: Growth of Structures from NMR Experiments Released per Year

Experimental methods such as X-ray crystallography, NMR spectroscopy, and 3D electron microscopy are used to determine the location of each atom relative to each other in the molecule.

Protein Data Bank (https://www.rcsb.org/)

All Statistics

PDB Statistics: Growth of Structures from 3DEM Experiments Released per Year

Experimental methods such as X-ray crystallography, NMR spectroscopy, and 3D electron microscopy are used to determine the location of each atom relative to each other in the molecule.

Biocrystallography (MX)

X-ray crystallography is the science of determining the arrangement of atoms within a **crystal** from the manner in which X-rays are scattered by the crystal.

Aim:

3D structure determination of biological macromolecules at **atomic resolution** (x, y, z positions for each atom of the macromolecule), but ...

"strictly speaking", X-ray crystallography measures only the <u>density of</u> <u>electrons</u> within the crystal, from which the atomic positions can be inferred.

Object: <u>real system</u> (proteins, DNA, RNA, and their complexes)

the specimen should not be damaged during the experiment (the sample is X-ray sensitive)

• the system is usually big (the smallest proteins have well over 1000 atoms and the largest proteins may have between 10000 and 100000 atoms)

Credits: Michael

Biocrystallography (MX)

Credits: Micheline Pelletier/Corbis

Ada E. Yonath

Ribosome: 19198 protein atoms, 32470 RNA atoms (>50000 atoms)

Biocrystallography (MX)

X-ray crystallography is the science of determining the arrangement of atoms within a **crystal** from the manner in which X-rays are scattered by the crystal.

Why X-rays?

protein = polypeptide chain made by covalently bound amino acids

Biocrystallography (MX)

X-ray crystallography is the science of determining the arrangement of atoms within a **crystal** from the manner in which X-rays are scattered by the crystal.

Why X-rays?

The wavelength of a X-rays is roughly 1 Å, which is on the scale of a single atom, and it allows to have <u>sufficient resolution to determine the atomic</u> <u>positions</u>

Biocrystallography (MX)

X-ray crystallography is the science of determining the arrangement of atoms within a **crystal** from the manner in which X-rays are scattered by the crystal.

Why crystals?

X-ray crystallography requires a crystal to amplify the signal (<u>10¹⁵-10¹⁶</u>).

The periodicity of the electron density is used to diffract the X-rays with manageable measurement error

MX: expression and protein purification

MX: crystallization

- volume $\leq 0.1 \text{ mm}^3$
- crystal lattice periodicity > 100 Å
- solvent content 30% 80% v/v
- non-covalent (weak) interactions (surface amino acids)
- mechanic fragility (E_{stab.} < 10 kcal/mol, less than protein folding energy)

MX: crystallization

How to crystallize a protein:

the "bottleneck" of the procedure !!!

• protein crystallization is mainly <u>a trial-and-error procedure</u> in which the <u>protein is slowly precipitated</u> from its solution (to avoid formation of useless dust or amorphous gel).

 crystal growth in solution is a multiparameter process involving three basic steps: <u>nucleation</u> (possibly having only 100 molecules), <u>growth</u>, and <u>cessation</u> <u>of growth</u>.

MX: X-ray diffraction

MX: X-ray diffraction

- X-rays selected out of a relatively <u>wide range of wavelengths</u> to optimise the experiment around the sample properties (i.e. λ tuned to exploit the <u>absorption properties</u> of heavier chemical elements naturally present or added to the crystal) → **«anomalous scattering»**
- <u>cryo-cooling</u> of the sample is mandatory

The energy range of X-rays used for diffraction (6 - 15 keV) is a severely ionizing radiation

 \Rightarrow formation of reactive <u>radicals</u> in the sample (water radiolysis), which rapidly destroy any protein crystal, particularly at dose rates experienced at synchrotrons

The energy range of X-rays used for diffraction (6 - 15 keV) is a severely ionizing radiation

 \Rightarrow formation of reactive <u>radicals</u> in the sample (water radiolysis), which rapidly destroy any protein crystal, particularly at dose rates experienced at synchrotrons

The energy range of X-rays used for diffraction (6 - 15 keV) is a severely ionizing radiation

 \Rightarrow formation of reactive <u>radicals</u> in the sample (water radiolysis), which rapidly destroy any protein crystal, particularly at dose rates experienced at synchrotrons

Symptoms:

- increase in unit cell parameters
- decrease in crystallographic symmetry
- decrease of intensity and resolution
- site-specific damages (disulphide bond breakage, decarboxylation of acidic residues, reduction of metal centers, ...)

MX: Cryo-crystallography at the Synchrotron

- an efficient way to suppress radiation damage by slowing down the kinetics of the radical reactions is cryogenic cooling
- ⇒ **flash-cooling** crystals to liquid nitrogen temperatures, either in cold nitrogen gas streams or directly into liquid nitrogen
- to prevent the formation of crystalline ice during flash-cooling of the crystals, <u>cryoprotectants</u> are necessary
- \Rightarrow ethylene glycol (the anti-freeze in automobile radiators), glycerol, higher alcohols, ... etc

MX: Cryo-crystallography at the Synchrotron

• the crystal is removed from the crystallization drop using **cryo-loops** and briefly dipped into a cryoprotectant before being immersed into liquid nitrogen

MX: Cryo-crystallography at the Synchrotron

MX: Cryo-crystallography at the Synchrotron

MX: Cryo-crystallography at the Synchrotron

• Sample changer robot mounts the crystals in the goniometer

MX: Cryo-crystallography at the Synchrotron

MX beamline (ESRF ID-23-2)

MX: Cryo-crystallography at the Synchrotron

XRD1, XRD2

Diamond (Didcot) 103, 104, 104-1, 123, 124

ESRF (Grenoble) ID23-1, ID23-2, ID29, ID30A-1, ID30A-3, ID30B

MX: The "phase problem"

• Molecular Replacement (<u>MR</u>) method (synchrotron radiation not required)

• Heavy atom method

- Multiple Isomorphous Replacement (<u>MIR</u>) (synchrotron radiation not required)

- APA.
- Single (or Multiple) Isomorphous Replacement with anomalous scattering (SIRAS or MIRAS) (synchrotron radiation required)
- Multiple wavelength Anomalous Diffraction (<u>MAD</u>) (synchrotron radiation required)

MX: Molecular replacement

target protein (structrure ?)

3D structure (model) with >30% amino acids sequence identity

X-ray data

MX: Molecular replacement

MX: Heavy atoms

calculation of approximate initial phases α_P (for every hkl)

$$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{V} \sum_{hkl} \left(|\mathbf{F}_{hkl}| P e^{i\alpha_{hkl}} \right) e^{-2\pi i (hx+ky+lz)}$$

MX: Heavy atoms

$$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{V} \sum_{hkl} \left(|\mathbf{F}_{hkl}| P e^{i\alpha_{hkl}} \right) e^{-2\pi i(hx+ky+lz)}$$

MX: Model building & refinement

MX: Model building & refinement

MX: Model building & refinement

MX: Model building & refinement

electron density & atomic model

crystal packing

MX: Fragment screening at the synchrotron CrystalDirect

Pipedream: AutoProc \rightarrow Molrep \rightarrow Buster \rightarrow Rhofit \rightarrow Buster

Cryo-EM: The "resolution revolution"

Science	Current Issue	First release papers	Archive	Abou	t∨	Su	ıbmit n	nanusc	ript	More ∨
HOME > SCIENCE > VOL. 343, NO. 6178 > THE RESOLUTION REVOLUTION										
Derspective biochemistry				f	\mathbb{X}	in	¢	R	Ø	\bowtie

The Resolution Revolution

Advances in detector technology and image processing are yielding high-resolution electron cryo-microscopy structures of biomolecules. [Also see Report by <u>Amunts *et al.*</u>]

WERNER KÜHLBRANDT Authors Info & Affiliations

SCIENCE • 28 Mar 2014 • Vol 343, Issue 6178 • pp. 1443-1444 • DOI: 10.1126/science.1251652

Cryo-EM: The "resolution revolution"

Early Microscopy

Unfortunately, the present [electron] microscope sees at a scale which is just a bit too crude.

Make the **microscope one hundred times more powerful**, and many problems of biology would be made very much easier.

Richard P. Feynman There's plenty of room at the bottom (1959)

Cryo-EM: The "resolution revolution"

Modern Cryo-Electron Microscopy

...for developing cryoelectron microscopy for the high-resolution structure determination of biomolecules in solution...

Cryo-EM: applications & limitations

For each biologically relevant question there is a biologically relevant resolution:

Cryo-EM: applications & limitations

For each biologically relevant question there is a biologically relevant resolution:

Cryo-EM: applications & limitations

Cryo-Electron Microscopy applies Transmission Electron Microscopy (**TEM**) to study the structure of protein at cryogenic temperatures

- low concentrations of sample (few μg)
- It does not require protein crystals
- proteins are in their native status (no fixing agents or lattice constrains)
- from one sample multiple structures (conformers)
- It is fast! From the eppendorf to the 3-D structure in 24-48h

Cryo-EM: the sample

Cryo-EM: the grid

Cryo-EM: blotting and vitrification

Cryo-EM: blotting and vitrification

Cold FF

Cryo-EM: the microscope "anatomy"

WHY ELECTRONS?

• Electrons are charged particles.

Emitter Type

Tip image comparison

- Electron wavelength at 103 104 KeV is smaller than the average atomic dimension.
- They strongly interact with matter: electrons interact with the Coulomb potential of the atoms (nuclei and electron clouds).
- The atomic scattering amplitude for electrons is 103 104 times larger than the corresponding ones for X-rays and neutrons.
- Electron trajectories can be easily deflected by electro-magnetic fields (electron lenses)

Cryo-EM: the microscope "anatomy"

Accelerating voltage:

Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	Velocity (× 10 ⁸ m/s)
100	0.00386	0.00370	1.644
120	0.00352	0.00335	1.759
200	0.00273	0.00251	2.086
300	0.00223	0.00197	2.330
400	0.00193	0.00164	2.484
1000	0.00122	0.00087	2.823

Cryo-EM: the microscope "anatomy"

A current through a coiled wire creates a magnetic field that bends the e- trajectory

The helical trajectory flips the image at the focal point

Cryo-EM: the microscope "anatomy"

Cryo-EM: the microscope "anatomy"

- DED has faster readout and reduced noise
- Movies instead of Images
- Electron counting mode

Cryo-EM: data collection and analysis

Cryo-EM: model building

Cryo-EM in 3 minutes

Cryo-EM at the Synchrotron

Cryo-EM microscopes (1040)

Cryo-EM research centers (1149)

Cryo-EM at the Synchrotron

Cryo-EM microscopes (1040)

Cryo-EM at the Synchrotron

- National Synchrotron Radiation Centre SOLARIS (Kraków)
- IBMB-CSIC and the ALBA Synchrotron (Barcelona)
- ESRF Grenoble The European Synchrotron Radiation Facility
- Synchrotron SOLEIL (Paris)
- Electron Bio-Imaging Centre (eBIC) at Diamond (Didcot, Oxfordshire)
- RIKEN SPring-8 Center CryoEM Facility
- Kurchatov Institute (Moscow)

"Gilberto Vlaic" XVII School on Synchrotron Radiation: Fundamentals, Methods and Applications

16-26 Sept. 2024, Muggia (Italy)

										REGISTER		
RESE/	ARCH AND	MARKI ET RESEARCH	ETS store			24/7	1-800 U.S. (-526-8630 TOLL FREE)	+353-1-416-890 REST OF WORLD	00		EUR V
Search market reports by industry, keyword, or company name									۹			
Healthcare	Pharmaceuticals	Chemicals & Materials	Manufacturing & Construction	Energy & Natural Resources	Automotive & Transport	Teleco Comp	ms & uting	Food & Beverage	Consumer Goods & Services	s Mor Catego	e ries	Our Services

Home / Healthcare / Laboratory Equipment / Cryo Electron Microscope

Cryo-Electron Microscopy Market Report: Trends, Forecast and Competitive Analysis to 2030

Report 150 Pages October 2023 Region: Global Lucintel ID: 5910209

Description	Cryo-Electron Microscopy Trends and Forecast						
Table of Contents	The future of the global cryo-electron microscopy market looks promising with opportunities in the						
Companies Mentioned	life science research & academia, cancer research, omics research, pharma & biotech						
	manufacturing, cell & gene therapy, vaccines, preclinical & clinical research, and healthcare/medica						
Methodology	applications markets. The global cryo-electron microscopy market is expected to reach an						
Related Topics	estimated \$2.72 billion by 2030 with a CAGR of 12.4% from 2024 to 2030 The major drivers for this						
Related Reports	market are increasing demand for high-resolution structural biology data, on-going technological						
	advancements in cryo-EM instrumentation and software, and growing healthcare expenditure						
	across the globe.						

Cryo-EM @UNIMI

• **May 2016**: first *press release* of the newly purchased microscope TALOS Arctica

CORRIERE DELLA SERA / SCIENZE

«consente di scrutare il mondo all'interno della cellula» Il super microscopio da 3 milioni di euro alla Statale di Milano

È il primo del genere in Italia. Funziona a temperature bassissime ed è in grado di osservare singole molecole. È riuscito a «fotografare» il virus Zika

di Giovanni Caprara

http://users.unimi.it/biolstru/em.html

http://crcpediatrico.org/index.html

Cryo-EM @UNIMI

200 kDa \rightarrow 75 kDa