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Lecture outlook
- what is XPS (quick intro)

- e-spectrometer: how it works
- NAP-XPS
-AP-NEXAFS
-Instrument
-examples




FNOTOEIectron Spectroscopy (FrS>) or
X-ray Photoemission Spectroscopy
(XPS)

Photoelectron Spectroscopy (PES) is a
widely used technique to investigate o
the chemical composition of surfaces. Collection
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PES can probe many features of the
electronic structure, thus providing

information useful for the ) .
comprehension e.g. of spin/charge monoenergetic UV/X-ray radiation

transport, magnetic properties, local ’ Anquze the energies of the
structural order, etc... emitted electrons
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Photoelectric effect
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Aluminum Silicon
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hv: photon energy
Eg : core level binding energy
@an: work function of the

electron analyzer




Standard XPS: chemical analysis with
laboratory sources
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Reference: handbook of x ray photoemission
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X ray tube

Heated filament
emits electrons by
thermionic emission

Electrons are accelerated
by a high voltage.

<

Copper rod for
heat dissipation

Glass envelope % %

x-rays produced when
high speed electrons
hit the metal target.



CHEMICAL T
STATE b _
SENSITIVITY ..* hv = 1486.6 eV

Core level spectral lines are identified by
the shell from which the electron was
ejected (1s, 2s, 2p, etc.).
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Electron energy analysers
Time of flight

Electrostatic energy
analyser

7

/4 2% b

Interactionregion

Hemispherical or cilindrical

Broad application field with standard and
synchrotron sources
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Require pulsed sources, special applications:
Time resolved experiment
Angular resolved photoemission



The king of analysers:
electrostatic hemispherical analyser
‘ a)
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3 (4) parts: input lenses
hemisphers
Mean radius: 150 mm detectors
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Detectors: electron multipliers

Channeltrons Microchannel plate
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Both require vacuum better than 10-6 mbar!!!
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The pressure gap: bridging the distance
between UHV and real world

To gain inside in the catalitic processes we need to apply
the spectroscopic analysis to real processes...

NAP-XPS AP_XAS in the soft x ray

10p-10 mBar

"{> 5 P /

1023 mBar

Development of electron based operando spectroscopies
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Ambient pressure XPS

Conventional XPS APXPS

10210 100 10° 10% 107 10 10° 10+ 10° 102 10 10° 10" 10° 10°

mbar }
Motivation: Problems:
-surface structure may differ from what observed in 1) Electron analyser require UHV
UHV
-Dynamic effect can play a significant role 2) Electron escape depth

-Dynamic processes may be studied
-Material with high vapor pressure can be studied
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Analyser fOI’ NAP‘XPS (a smart solution...)

Several differential pumping stages

Extremely expensive, brute force............
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Gas
analytics
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NAP-XPS experimental setups
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Benchmark experiment:
chemical reactivity @ surfaces
#Catalysis

Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt
Foil Model Catalyst under CO, H,, and Their Mixtures

b Sl

Cheng Hao Wu, ™ Baran l;‘ren,i Hendrik Bluhm,® and Miquel B. Salmeron*

+Departmenr of Chemistry and ”Department of Materials Science and Engineering, University of California, Berkeley, California
94720, United States

*Materials Sciences Division and *Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
United States

© Supporting Information

ABSTRACT: Ambient-pressure X-ray photoelectron spectrosco-
py (XPS) was used to investigate the reactions of CO, H,, and
their mixtures on Co foils. We found that CO adsorbs molecularly
on the clean Co surface and desorbs intact in vacuum with
increasing rate until ~90 °C where all CO desorbs in seconds. In
equilibrium with 100 mTorr gas, CO dissociates above 120 °C,
leaving carbide species on the surface but no oxides, because CO
efficiently reduces the oxides at temperatures ~100 °C lower than
H,. Water as impurities or produced by reaction of CO and H,
efficiently oxidizes Co even at room temperature. Under 97:3 CO/
H, mixture and with increasing temperatures, the Co surface
becomes more oxidized and covered by hydroxyl groups until ~150 °C where surface starts to get reduced, accompanied by
carbide accumulation indicative of CO dissociation. A similar trend was observed for 9:1 and 1:1 mixtures, but surface reduction

begins at higher temperatures. ACS Catal. 2017 72 1 150'1 157

KEYWORDS: catalysis, Fischer—Tropsch synthesis, cobalt, ambient-pressure X-ray photoelectron spectroscopy
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Intensity

The classical experiment NAP-XPS
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Example 2: solid/liquid interfaces
SCIENTIFIC REPg}RTS

OPEN

Received: 12 October 2014
Accepted: og March 2015 :
Published: o7 May 2015 :

Usmg “Tender' ’X- rayAmb|ent

Pressure X-Ray Photoelectron
Spectroscopy as A Direct Probe of
Solid-Liquid Interface

Stephanus Axnanda**, Ethan J. Crumlin**, Bachua Mao*?, Sana Rani*, Rui Chang?,
Patrik G. Karlsson3, Marten O. M. Edwards?, Mans Lundqvist?, Robert Moberg?, Phil Ross®,

. Zahid Hussain® & Zhi Liu***

C We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a
solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic

: energy photoelectrons (7keV) at a pressure up to 110Torr has been constructed and commissioned.
Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous

. electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system,
“dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV-7 keV), we are able to

access the interface between liquid and solid dense phases with photoelectrons and directly probe

. important phenomena occurring at the narrow solid-liquid interface region in an electrochemical
system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an

: oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both
Pt** and Pt** interfacial species on the Pt working electrode in sitv. We believe this thin-film approach
and the use of "tender” AP-XPS highlighted in this study is an innovative new approach to probe this

key solid-liquid interface region of electrochemistry.
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The last frontier.......

Chamber-less measurement
» Easy sample exchange
-Improved flexibility in sample handling

»Gas reactions are not target to measurement.

XVII SILS School, Muggia 24/09/2024



Different approach: membranes!

Atmospheric pressure X-ray photoelectron spectroscopy apparatus:
Bridging the pressure gap

J. J. Velasco-Vélez,'22 V. Pfeifer,2 M. Havecker,"# R. Wang.® A. Centeno,* A. Zurutuza *
G. Algara-Siller,? E. Stotz,? K. Skorupska,' D. Teschner,? P. Kube,?

P. Braeuninger-Weimer,? S. Hofmann.® R. Schlégl.!? and A. Knop-Gericke?
'Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion,
Miilheim an der Ruhr 45470, Germany

*Department of Inorganic Chemistry, Fritz-Haber-Institur der Max-Planck-Gesellschaft, (a) e

Berlin 14195, Germany (C)
Engineering Department, University of Cambridge, Cambridge CB3 OFA, United Kingdom
*Graphenea, San Sebastian 20018, Spain

(Received 1 February 2016; accepted 9 May 2016; published online 25 May 2016)

64.7 eV
- 63.9 eV
61.7 eV
60.9 eV

——1st: H, 5% 215°C
2nd: O, 20% 215°C
——2nd-1st

One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction envi-
ronment. The electronic structure and chemical composition of surfaces become heavily influenced
by the surrounding environment. However, the lack of surface sensitive techniques that are able (b)
to monitor these modifications under high pressure conditions hinders the understanding of such
processes. This limitation is known throughout the community as the “pressure gap.” We have
developed a novel experimental setup that provides chemical information on a molecular level under
atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach
is based on separating the vacuum environment from the high-pressure environment by a silicon
nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene.
Using this configuration, we have investigated the local electronic structure of catalysts by means of
photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored
online by mass spectrometry and gas chromatography. The successful operation of this setup was
demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal)

and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black . . e
catalyst (powder). Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4951724] Review of Scientific Instruments 87; 053121 (2016)

Intensity (a.u.)

Binding Energy (eV)
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Questions?
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Ambient Pressure soft-XAS for solid/gas interfaces
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AP soft XAS: brief history
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ALS (2?)
2013 2018 2022
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Instruments:
Knop  Bell Duda Duda APE-HE VERSOX SSLS
Gericke Salmeron  Tamenori Kondoh Photon Factory (2022)
Salmeron
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AP Soft-XAS laboratory @APE-HE

Synchrotron radiation

Micro GC
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Benchmark experiment: Solid Oxide Fuel Cells

ITAPPLIED
ENERGY MATERIALS
Ceo
WAW, BCT a8 MO

Insights into the Redox Behavior of PryBa,sMnO;_s-Derived
Perovskites for CO, Valorization Technologies
Andrea Felli, Silvia Mauri, Marcello Marelli, Piero Torelli, Alessandro Trovarelli, and Marta Boaro*

Cite Thiz ACS Appl. Energy Mater. 2022, 5, 66876699 I: Iﬁead Online

.-'E'!.G C ES S | |dil Metrics & More | [Ei Aricle Recommendations | a Supporting Information

Problem: high working temperature, search for materials that works in intermediate range (400-600 °C)
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PBM Structural propertles
Qe@@

Single mixed perovskite

Pro.sBag.sMnOs.s Double layered

Double layered perovskite

T.Shinetal. PrBaMn.Os. perovskite

Faraday Discuss., 2015, 182, 227. (r-PBM) PrBaMn.Os.;
(o-PBM)
v" Both high ionic & electronic conductivity;
v' In situformation of the layered phase PrBaMn,Os,s;
v" High stability in reducing environment;
v" High sulfur tolerance;
v Good electrochemical activity towards the oxidation of hydrocarbons;
v Employed as electrodes in more advanced technologies (Symmetrical
SOFC, Reversible SOC);

v Good matrix for the creation of self-assembled ex-solved

nanostructures.
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TPR: 1st TPR cycle . 100 [ 900
2nd TPR cycle TGA: L 200
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/:-;:\ 4.5% H,, 900°C for 10 min — -—600 —
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> Sp'llttlr?g of th(.e first consumption peak after the immediate » Same trend after every Redox cycle;
> g)fldahon at hlghftehmperal'iurel,q. H » Immediate re-oxidation of the r-PBM phase;
Isappearance of the peak at high temperature; » Results in line with the TPR experiments.

» Repetition of the TPR signal after every RedOx cycle.
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In situ-XRD
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In situ Soft-XAS
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Water interaction with surfaces

V. Polewczyk, M. Mezhoud, M. Rath, O. EI-Khaloufi, F. Bassato,
A. Fouchet, W. Prellier, M. Frégnaux, D. Aureau, L. Braglia, G.
Vinai, P. Torelli and U. Luders, “Formation and Etching of the
Insulating Sr-Rich V5+ Phase at the Metallic SrVO3 Surface
Revealed by operando XAS Spectroscopy Characterizations ",
Adv. Funct. Mater. 2301056 (2023).
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V reduction under water exposition
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Aged SrVO3 present over-oxydized phase at surfaces. Sample has been exposed to 1 Bar of He with 3% of water vapor
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Reflectivity measurement and etching
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Figure 4. X-ray reflectivity measurements performed on the aged SVO
sample before (dark green) and after (red) the water vapor cleaning

treatment.
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Comparison between NAP-XPS and AP soft-XAS

NAP-XPS Soft-XAS
Surface sensitivity Y <
Informative “ <

Acquisition time

—/
Rough condition @ =
Table of elements {L @

Weak point the elements atteinable, however for C,0,N or Transition metals or rare earth
is probably more efficient from many point of view.
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