

Nanostructured Interfaces and Surfaces Centre of Excellence

Watching nanomaterials with X-ray eyes: from nanoparticles to real devices

Lorenzo Mino

Department of Chemistry and NIS, University of Torino

School on Synchrotron Radiation "Gilberto Vlaic", 16-26 September 2024

Nanomaterials

Nanotechnology: unintentional beginning

Lycurgus Cup

4th-century, its red color derives from enclosed Au particles in the size range 5–60 nm. Classical Mie scattering changes the colur of transmitted light

Ancient Hair Dyeing Formula

Hair-blackening recipe originating from the Greco-Roman period, based on a mixture of PbO and $Ca(OH)_2$ with a small amount of water, has been shown to work by the formation of 5-nm PbS nanocrystals inside the hair cortex

Nanotechnology: unintentional beginning

Gold and silver nanoparticles can be used to produce stained glass windows.

Medieval stained glass

Size: 100 nm S Reflected color: Shiny gold

Schott glasses

Optical filters with different cut-off frequencies

Nanotechnology: conceptual origins

There's Plenty of Room at the Bottom

29 December 1959, annual meeting of the American Physical Society, California Institute of Technology (Caltech)

Richard Feynman (Nobel Prize in Physics 1965)

Norio Taniguchi

Coined the term «nano-technology» in 1974 referring to «ultra precision materials processing technologies»

Nanomaterials applications

Nanomaterials market

U.S. nanomaterials market size, by product, 2016 - 2027 (USD Billion)

Nanomaterials properties

S.Cao et al., Chem. Soc. Rev., 2016, 45, 4747--4765

Nanomaterials properties

Top: Calculated UV-visible spectra for (a) Au spheres with varying diameters, (b) Au ellipsoids of varying aspect ratio, and (c) thin glass films loaded with increasing Au nanoparticle volume fractions. Bottom: Experimental spectra for (d) Au spheres,⁴⁰ (e) Au nanorods, and (f) multilayer films of glass-coated Au spheres with varying interparticle distance.

Probing different lenght scales

Let's start with a simple case: nanoparticles...

TiO₂ as model system

TiO₂ applications

TiO₂ photocatalysis

Photocatalysis

Acceleration of a chemical reaction induced by photoabsorption by a solid material (the "photocatalyst"), which remains unchanged during the reaction

Importance of TiO₂ NP size

N. Satoh et al., Nature Nanotech 2008, 3, 106–111

Importance of TiO₂ NP shape

Facet-dependent band gap

J. Pan et al., Angew. Chem. Int. Ed. 2011, 50, 2133 –2137

1 DOX

X-ray techniques in nanoparticles characterization

Shape and size engineered TiO₂ nanoparticles0

T.. Gordon et al., J. Am. Chem. Soc. 2012, 134, 6751 – 6761

Which is the NPs crystal structure?

Which is the NPs crystal structure?

Which is the NPs size?

Monitoring NP sintering and phase transitions

Temperature of treatments ^a	Phase composition ^b		Crystallite sizes ^c	
	Anatase (wt%)	Rutile (wt%)	Anatase (nm)	Rutile (nm)
RT	83	17	28	47
473 K	83	17	28	47
673 K	83	17	28	47
773K	80	20	33	56
873 K	59	41	35	60
973 K	7	93	48	62
1,023 K		100		237

M. J. Uddin et al., Front. Mater. 2020, 7, 192.

Which is the NPs shape?

The relative intensity and FWHM of the XRD peaks depends on the NPs shape

Small angle X-ray scattering (SAXS)

Technique	d (nm)	q (nm ⁻¹)	q (Å-1)	θ(deg) for λ=1.5405Å
SAXS/SAXD	100	0.063	0.0063	0.044
SAXS/SAXD	10	0.63	0.063	0.44
WAXS/WAXD	1	6.3	0.63	4.4
WAXS/WAXD	0.1	63	6.3	50.6

 $d = \frac{\lambda}{2\sin\theta} = \frac{2\pi}{\left\lceil\frac{4\pi}{\lambda}\right\rceil\sin\theta} = \frac{2\pi}{q}$

C. Giannini et al., Prog. Mater. Sci. 2020, 112, 100667

SAXS: shape and size

The gyration radius (R_g) can be linked to the main dimensions of the object

C. Giannini et al., Prog. Mater. Sci. 2020, 112, 100667

The Debye scattering equation

 r_{mn} is the distance between atoms m and n, with atomic form factors F_m and $F_n,$

The Debye approach holds for both small and wide angle scattering data, and it is applicable to crystalline, partially crystalline and amorphous samples.

Combining SAXS and WAXS

School on Synchrotron Radiation "Gilberto Vlaic"

Why X-rays and not electron microscopy?

Shape-controlled NPs

Industrial commercial NPs

TiO₂ P25 (Evonik)

TiO₂ T-SP (Solaronix)

In «real» commercial samples the NPs heterogeneity often makes the extraction of statistically significant information from TEM images laborious and subject to bias

Combining scattering and spectroscopy

Study ot the crystallization process from amorphous TiO₂ to anatase

XANES highlights the presence of Ti^{4+}_{5c} in amorphous TiO_2 .

Ti K-edge EXAFS analysis

M. Fernandez-Garcia et al., J. Am. Chem. Soc. 2007, 129, 13604 - 13612

Low Ti - Ti coordination numbers (for crystalline anatase CN = 4) suggests that Ti cations have a severely restricted 3D connectivity in all samples.

In situ XRD patterns during heating

Upon heating in dry air, samples T, Tw, and TwB nucleate around 350 - 400 °C, samples TA and TB nucleate around 550 °C

Monitoring crystallization by PDF

PDF obtained during heating in dry air in step of 50 °C

Crystallization onset temperature is clearly related to the local middle range order (3 - 4 Å) of the different samples

Let's complicate a little bit the system...

Supported metal NPs

F. Pellegrino et al., ACS Catal.. 2019, 129, 13604 - 13612

Pt NPs photodeposition

XAS operando setup

3D-printed operando photocatalytic cell

E. Kozyr et al. J. Synchrotron Rad. (2024) 31, 1071–1077

E. Kozyr et al. Catalysts (2023) 13, 414

XAS Pt L₃-edge: study of photodeposition

TiO₂

Pt/TiO₂

School on Synchrotron Radiation "Gilberto Vlaic"

XAS operando study of H₂ photoproduction

Photocatalytic H₂ production

F. Pellegrino et al., ACS Catal.. 2019, 129, 13604 - 13612

Let's jump to a more complex case: real devices...

Nanostructured device characterization

Е

Semiconductor nanostructures to realize lasers and modulators for fiber-optics communications

Both laser and modulator are In_xGa_yAl_{1-x-y}As multi quantum well (MQW) heterostructures grown on InP(001)

Signal modulation for fiber-optic communication

The signal can be modulated in two different ways:

• Direct: modulating the laser current

non equilibrium in the charge carriers causes frequency shifts in the emitted radiation

MOD

• External: two different devices act as laser source and signal modulator $I_m = I_m = CW$ $V_m = M_m$

LASER

both the frequency (Gbit/s) and transmission lengths are improved

Electro-absorption modulator (EAM)

L. Mino et al., Small 2011, 7, 930-938

A suitable voltage switches the EAM from transparent to opaque (Stark effect)

Modulator (EAM)- DFB laser inte

Monolithic integration of the laser and the EA

Selective Area Growth (SAG): a SiO₂ mas the precursors flux

variation in composition and thickness of the material grown between the SiO₂ stripes

The complete modulator-laser device

Energy gap space-resolved determination

Space resolved photoluminescence (PL) study with a 15 μ m resolution along a line parallel to the SiO₂ stripes (Y-line)

L. Mino et al., Adv. Mater. 2010, 22, 2050-2054

Energy gap space-resolved determination

Space resolved photoluminescence (PL) study with a 15 μ m resolution along a line parallel to the SiO₂ stripes (Y-line)

L. Mino et al., Adv. Mater. 2010, 22, 2050-2054

Synchrotron X-ray micro-/nano-beams

ESRF ID22 beamline (now ID16)

X-ray micro-beam: 1.7 µm × 5.3 µm

Micro-XRD experimental setup

CCD image

Micro-XRD pattern acquisition

176 images covering a rotation of \pm 1.1° around the InP(004) Bragg angle ($\theta_B = 14.359^\circ$ at 17 keV)

35 different points have been sampled along the Yline with 2 µm resolution

Reconstruction of the XRD patterns

L. Mino et al., Adv. Mater. 2010, 22, 2050-2054

Space-resoved XRD results

Widths (w_b, w_w) and mismatches (m_b, m_w) of the MQW barrier and of the well obtained performing a fitting of the XRD patterns

X-ray absorption spectroscopy

Local structural information on the In_xGa_yAl_{1-x-y}As semiconductor combining micro-XAS at the Ga K-edge and As K-edge

EXAFS signal extraction

EXAFS data fitting

For the fit a co-refinement approach was adopted using the following intervals in k- and R-spaces: $3.0-9.0 \text{ Å}^{-1}$ and 1.0-3.2 Å for As K-edges, $3.0-10.8 \text{ Å}^{-1}$ and 1.0-4.3 Å for Ga K-edges

EXAFS results

Parameter	SAG	FIELD
R _{As-Ga} [Å]	2.469 ± 0.007	2.463 ± 0.005
ΔR_{As-Ga} [Å]	0.021 ± 0.007	0.015 ± 0.005
R _{As-In} [Å]	2.60 ± 0.02	2.60 ± 0.02
ΔR_{As-In} [Å]	-0.02 ± 0.02	-0.02 ± 0.02
R _{As-Al} [Å]	2.49 ± 0.11	2.48 ± 0.11
σ^2_{As-Ga} [Ų]	0.006 ± 0.002	0.005 ± 0.002
σ^2_{As-In} [Ų]	0.008 ± 0.003	0.007 ± 0.003
$\sigma^2_{As-Al}[\AA^2]$	0.010 ± 0.004	0.008 ± 0.004

L. Mino et al., Small 2011, 7, 930-938

Further reading

Challa S.S.R. Kumar Editor

X-ray and Neutron Techniques for Nanomaterials Characterization

MATERIALS.SPRINGER.COM

2 Springer

CHARACTERIZATION OF NANOPARTICLES

Measurement Processes for Nanoparticles

Micro & Nano Technologies Series

Edited by Vasile-Dan Hodoroaba Wolfgang E. S. Unger Alexander G. Shard

ELSEVIE

Challa S.S.R. Kumar Editor

In-situ Characterization Techniques for Nanomaterials

MATERIAL SPENGER COM

Further reading

JOURNAL OF PHYSICS D: APPLIED PHYSICS doi:10.1088/0022-3727/46/42/423001

J. Phys. D: Appl. Phys. 46 (2013) 423001 (72pp)

TOPICAL REVIEW

Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases

Lorenzo Mino¹, Giovanni Agostini¹, Elisa Borfecchia¹, 1 Andrea Piovano³, Erik Gallo^{1,4} and Carlo Lamberti¹

Progress in Materials Science 112 (2020) 100667

Contents lists available at ScienceDirect

Progress in Materials Science

journal homepage: www.elsevier.com/locate/pmatsci

Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy

Cinzia Giannini^a, Vaclav Holy^{b,c}, Liberato De Caro^a, Lorenzo Mino^d, Carlo Lamberti^{e,f}

Materials characterization by synchrotron x-ray microprobes and nanoprobes

Lorenzo Mino, Elisa Borfecchia, Jaime Segura-Ruiz, Cinzia Giannini, Gema Martinez-Criado, and Carlo Lamberti Rev. Mod. Phys. **90**, 025007 – Published 28 June 2018

IOP PUBLISHING

Thank you for your attention!