Free Electron Lasers & ultrafast x-ray science

Sakura Pascarelli European XFEL

XVII School on Synchrotron Radiation: Fundamentals, Methods and Applications Muggia, 24 September 2024

sakura.pascarelli@xfel.eu

European XFEL

Outline

Introduction

Free-electron laser basics

X-ray FEL facilities

– break –

LUITED 19.5 UP THE UP THE UP THE FIRST IS STATE: UP THE UP

Biological and soft matter

Extreme states of matter

Future

Different types of lightsources

Storage rings (SR)

- High perf. x-ray source
- Very stable; highly efficient
- Many user installations for large variety of applications

→ **X-ray** scattering, microscopy, spectroscopy

X-ray FEL radiation

- Peak brightness x-ray source
- Single-pass; few sources
- So far only few user installations; applications u. study

→ **X-ray** ultrafast methods using scattering, microscopy, spectroscopy; non-linear methods

Visible Laser radiation

- Commercially or home-built systems widely distributed
- **Huge community**
	- Attosecond & non-linear techn.

→ Light ultrafast and non-linear methods using microscopy or spectroscopy

THE XFEL radiation is very different from synchrotron radiation

fs pulse: a probe of atomic motion (100fs) …. and charge migration (fs) hard X-rays: atomic resolution, chemical selectivity, bulk sensitivity

$v = 3000 \, m/s$, $a = 3\AA$ $\Rightarrow \delta t \le 10^{-13} s = 100 \, fs$ − Speed of sound: = 3000 m/s, $a = 3\AA$ $\Rightarrow \delta t \le 10^{-13}$ s = 100 fs

Can we measure phonon dynamics in the time domain ? Can we see how charge migrates from one atom to another ?

Diffract before destruction: a totally new approach to structural determination with X-rays

Free Electron Lasers: The exploding protein R. Neutze et al, Nature 406, 752 (2000)

Can we beat radiation damage?

Can we measure at room temperature?

Can we make movies of proteins at work?

Outline

Future

X-ray Free-Electron Laser (X-ray FEL)

Differences with respect to undulator/synchrotron radiation

Resonance condition is equal

$$
\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) \ K = 0.934 \lambda_u B_0
$$

Much tighter electron phase space parameters

Extremely small emittance

Bunch compression

micro-bunched

Coherent emission process

European XFEL

N-electrons random distribution

 $P_{spt} \sim NP_1$

 $E_{coherent} \sim NE_1$ $P_{coherent} \sim N^2 P$

Bunching the electrons

By electro-magnetic forces arising from interaction with the co-propagating radiation field **Energy change due to x-ray field:**

$$
dE = -e v_x(t) \times E_x(t) dt
$$

SASE resonance condition: Keep phase between $v_x(t)$ and $E_x(t)$ const.

FELs & ultrafast x-ray science ~ 10

GENESIS simulation for TTF parameters Courtesy - Sven Reiche (DESY, now PSI)

Seeded FEL radiation

- Manipulate electron bunch using seeding pulse **improve start condition compared to noise (SASE case) improved radiation properties**
	- ► temporal, spectrum, coherence, fluctuations
	- **shorter gain length**
	- **typically needs more setup time**
- Various methods ($\hbar \omega$ dependent)
- Note: in general easier for smaller $\hbar\omega$

European XFEL

X-RAYS AND PRINCIPLES AND APPLICATIONS

DAVID ATTWOOD AND ANNE SAKDINAWAT

6 X-Ray and EUV Free Electron Lasers

www.cambridge.org/xrayeuv

SECOND EDITION

New opportunities offered by X-ray FELs

Open science problems

Systems ,in function': excited states, non-reversible processes

> complex (bio-)structures and their temporal evolution

Outline

Introduction Free-electron laser basics X-ray FEL facilities – break – LACTE Ultra fast processes in chemistry and materials Biological and soft matter Extreme states of matter

Future

X-ray free-electron lasers worldwide

16

Some specifics about FEL facilities

- FLASH first user facility (2005) for XUV and soft x-ray FEL radiation
- FERMI first user facility to successfully employ laser seeding (XUV to soft x-rays)
- LCLS first user facility (2009) for hard x-ray FEL radiation and later self-seeding
- SACLA, PAL, SwissFEL compact hard x-ray FELs
- European XFEL First international user facility (2017) for soft and hard x-ray FEL radiation
- **LCLS-II(-HE), SHINE first cw-type soft and hard x-ray FELs**

Development of peak brightness

Peak brightness is the quantity best describing performance of pulsed coherent (laser) x-ray sources

 α_{x} Δ_{y} Δ_{y} ^{*y*} \times *bandwidth* \times Δ_{t} *Number of photons* $\Delta \Delta \Delta \Delta$ x bandwidth $\times \Delta$ Peak brightness $=$ -Peak brightness = $\frac{\Lambda_x \Lambda_{x'} \Lambda_y \Lambda_{y'} x}{\Lambda_x \Lambda_{x'} \Lambda_{y'} x}$

- SR sources use average brightness (brightness scaled to 1 second)
- Tremendous improvement opens route to new methods & applications

Can the Peak Brightness increase further ?

European XFEL

About the European XFEL

International user facility for FEL research

- **Providing soft & hard X-ray FEL radiation**
- **Photon energy 300 eV to ≥ 20 keV**
- **High pulse energies**
- **MHz repetition rates**

FELs & ultrafast x-ray science ~ 20

Layout of the European XFEL

- 11

Beam distribution & instruments

Key parameters of EuXFEL Specific electron & x-ray beam delivery pattern Specific electron & x-ray beam delivery pattern

European XFEL

- - **RF repetition rate: 10 Hz**
	- **RF flat-top length: ~ 600 µs**
	- **Up to 2700 bunches/train**
	- **Bunch spacing: Up to 4.5 MHz**

Seven instruments are in user operation

SASE1

SASE2

SASE3

Scientific instruments

FXE (Femtosecond X-ray Experiments)

- Ultrafast dynamics of liquids and solid matter
- Combination of spec. & scat. techniques

MID (Materials Imaging & Dynamics)

- CDI from nano-structured samples
- XPCS of nanoscale dynamics

SPB/SFX (Single Part., Bioimaging, & SFX)

- Coherent diffraction imaging from single part.
- Serial fs nano-crystallography

HED (High Energy Density science)

- Ultrafast dynamics of highly excited matter
- Combinations of scattering, diff. & spectroscopy

SQS (Small Quantum Systems)

- Ultrafast dynamics of atoms, ions & clusters
- Combination of spec. & coh. scat. techniques

SCS (Spectroscopy & Coherent Scattering)

- Ultrafast dynamics of complex solids
- Combination of hr-inelastic spec. & coh.scattering

SXP (Soft X-ray Port)

Time-resolved X-ray photoelectron spectroscopy

Open port

Examples of X-ray FEL scientific applications

Ultrafast processes in chemistry and materials Make use of fs time resolution w/pump-probe

methods

Biological and soft matter **Make use of coherence and high intensity** Serial fs crystallography Photon correlation spectroscopy

Extreme states of matter **Make use of very intenste and short x-ray pulses** to study short- lived states

Outline

Introduction

Free-electron laser basics

X-ray FEL facilities

– break –

LUITED 19.5 Ultra fast processes in chemistry and materials

Biological and soft matter

Extreme states of matter

Future

Examples of X-ray FEL scientific applications

Ultrafast processes in chemistry and materials Make use of fs time resolution w/pump-probe

methods

Biological and Soft Matter Matter Make use of coherence and high intensity Serial fs crystallography Photon correlation spectroscopy

Extreme states of matter **Make use of very intenste and short x-ray pulses** to study short- lived states

Ultrafast x-ray science

Connection of length and time scales

Magnetic recording

time per bit is \sim 2 ns

Laser pulsed

current switch \sim 1ps

Oscillation period of

visible light is \sim 1 fs

Investigations of structural dynamics

- Atoms, molecules, clusters Solids, materials Complex matter
- Extreme states

Performing ultrafast x-ray experiments using FELs

Injector

laser

Optical master

laser oscillator

European XFEL

S. Schulz et al., Nat. Comm. 6, 5938 (2015)

Pump-probe

laser system

Chemical Dynamics

a sa Ti

Charge transfer dynamics in photocatalysts

FELs & ultrafast x-ray science Strutture di Struttura (di Struttura di Struttur

Understanding the ultrafast dynamics of DNA/RNA

PI: Oksana Plekan, Elettra

European XFEL

Investigating the ultrafast photochemistry of nucleobases to address the photodamage and photoprotection mechanisms

Photoelectron spectroscopy as a marker of the photoexcited states

Aurophilicity in Au(I) complexes by fs X-ray solution scattering

Applications in chemical sensing, OLED devices, bio-medical imaging Metal-metal interaction; equivalent to strong H bonding Study of excited state structural and electronic dynamics With high photon energy (high q), Au-Au distance can be measured

European XFEL

✓ **Au-Au distance decrease = 0.08 Å**

✓ Vibrational wave packet formation ~**300 fs** Ph.D. thesis: Sharmistha Paul Dutta PI: Dmitry Khakhulin Local Contact: Mykola Biednov

A

Electron-phonon coupling in superconductors

- 1. Initiate coherent phonon mode through photo-excitation of electrons.
- 2. Light induced coherent dynamics of crystal lattice \rightarrow XRD
- 3. Electronic band energy \rightarrow ARPES

Nucleation and annihilation of magnetic skyrmions

SCS

nature
materials **ARTICLES** https://doi.org/10.1038/s41563-020-00807 Check for updates **Observation of fluctuation-mediated picosecond**

nucleation of a topological phase

Büttner et al. Nature Materials 20, 30–37 (2021)

Capturing early stages of crystallization

MID

XCCA: X-ray Cross-Correlation Analysis

European XFEL

Johannes Möller *et al.* Phys. Rev. Lett. [132, 206102 \(2024\)](https://link.aps.org/doi/10.1103/PhysRevLett.132.206102)

Examples of X-ray FEL scientific applications

Ultrafast processes in chemistry and materials Make use of fs time resolution w/pump-probe

methods

Biological and soft matter **Make use of coherence and high intensity** Serial fs crystallography Photon correlation spectroscopy

Extreme states of matter **Make use of very intenste and short x-ray pulses** to study short- lived states

MHz serial femtosecond crystallography SPB-SFX

High resolution structure determination from very small, "radiation sensitive" or "dynamic" crystals

 \sim 10⁵ good patterns per structure

M.O. Wiedorn et al. Nature Comm 9, 4025 (2018)

CFEL-designed fast jets recover in time for the next pulse at 1.1 MHz repetition rate

Max Wierdorn, Claudio Stan

European XFEL

The structure of natural crystals of toxins produced by mosquitocidal Bacillus thuringiensis elucidated using SFX

ARTICLE https://doi.org/10.1038/s41467-022-31746-x

OPEN

De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals

Tetreau Nat. Comm. (2022) 13:4376

PNAS

Check for updates

RESEARCH ARTICLE BIOCHEMISTRY **OPEN ACCI**

) nH-induced dissolut

inding to specific receptor

(V) Vacuolation of the cytoplasm

protein crystals III) Activation of proteins

Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using **MHz-SFX**

B.thuringiensis

Protein crysta

European XFEL

SPB-SFX

Williamson PNAS (2023), Vol. 120, no. 49

Real time molecular dynamics in native state & transient structures of proteins

Making molecular movies

A pump-probe experiment at an XFEL

European XFEL

ARTICLES

NATURE METHODS

Time series of TRX data from 3 ps to 100 ps at LCLS, EuXFEL and APS. Structures and difference electron density of the photocycle of the photoactive yellow protein

European XFEL

SPB-SFX

Extended Data Fig. 1 | Setup of a MHz TR-SFX experiment at the EuXFEL (modified from Wiedorn et al., 2018). X-ray pulses arrive in 1.13 MHz bursts which repeat every 100 ms. There are 176 X-ray pulses in the burst. The KB-mirror system focuses the X-ray beam to a 2 - 3 um focal spot. The fs-laser delivers 376 kHz pulses (λ =420 nm, blue) synchronized to the X-ray pulses. The laser focus is 42 µm Ø in the X-ray interaction region (dotted circle). The microcrystals are mixed with fluorinated oil and injected by a GDVN. The jet produced by the GDVN, the laser beam as well as the X-ray pulses precisely intersect. The time-resolved diffraction patterns are collected by the AGIPD. Diffraction patterns with common time-delays were separated based on the pulse ID (see also Fig. 2b) and combined to datasets.

Pandey Nat. Methods (2020), 17, p.73–78

A

Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetitionrate mix-and-inject serial crystallography

Substrate binding study to investigate antibiotic resistance in β -lactamase tuberculosis

Small crystals allow substrate diffusion across crystals in short time and can be interrogated with short, powerful x-ray pulses

- M. tuberculosis β-lactamase
	- chemically modifies β-lactam antibiotics
	- reaction with cephalosporin antibiotics ceftriaxone

formation of the enzyme-substrate complex

B

D

C

SPB-SFX

Pandey IUCrJ (2021) 8, 878–895

European XFEL

Reiser Nat Comm. (2022) 13, 5528

Real-time swelling-collapse kinetics of nanogels

- **PNIPAm:** An important nanogel used in medicine to release drugs in a targeted and controlled manner at the desired location in a patient's body
- Undergoes temperature-induced swelling and collapsing

Temperature

European XFEL

- Rapid, temperature-dependent changes investigated by X-ray photon correlation spectroscopy (XPCS)
- In contrast to previous studies, the nanogel shrinks significantly faster in the range of 100 nanoseconds but takes two to three orders of magnitude longer to swell

Dallari et al.: Sci. Adv. 10, eadm7876 (2024) francesco.dallari@ unipd. it

Examples of X-ray FEL scientific applications

Ultrafast processes in chemistry and materials Make use of fs time resolution w/pump-probe

methods

Biological and soft matter **Make use of coherence and high intensity** Serial fs crystallography Photon correlation spectroscopy

Extreme states of matter **Make use of very intenste and short x-ray pulses** to study short- lived states

FELs & ultrafast x-ray science 50

High Energy Density Science at X-ray FELs

high density $\rho > \rho_0$, T < few eV

solid density $\rho = \rho_0$, T up to keV

High pressure science

Planetary/geo science Melting curves Thermal conductivity Chemical synthesis Strain-rate dependence High T superconductivity Novel materials

Nanosecond 50 - 100 J laser DAC, d-DAC, Pulsed laser heated DAC

Relativistic Laser-Plasmas

Electron transport, Instabilities and filamentation, Ionization dynamics Particle acceleration

Multi-100 TW fs laser

Intense radiation matter interaction

Transport properties, Hollow atoms, rates

Isochoric X-ray excitation

Dynamic compression using high energy lasers

Observing new states of matter

FELs & ultrafast x-ray science 52

ARTICLE

 2θ (degree)

Received 5 Apr 2015 | Accepted 5 Feb 2016 | Published 14 Mar 2016

DOI: 10.1038/ncomms10970 **OPEN**

Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

D. Kraus¹, A. Ravasio², M. Gauthier², D.O. Gericke³, J. Vorberger^{4,5}, S. Frydrych⁶, J. Helfrich⁶, L.B. Fletcher², G. Schaumann⁶, B. Nagler², B. Barbrel¹, B. Bachmann⁷, E.J. Gamboa², S. Göde², E. Granados², G. Gregori⁸, H.J. Lee², P. Neumayer⁹, W. Schumaker², T. Döppner⁷, R.W. Falcone¹, S.H. Glenzer² & M. Roth⁶

D. Kraus et al., Nat. Comm. 7:10970 (2016)

HED/HIBEF@EuXFEL – first data and results

Compressed diamond

Liquid carbon

Evolution of carbon's structure under laser-driven shock compression for laser power of increasing intensity

PI Dominik Kraus, Rostock Uni **European XFEL**

HED

Metastable phases of Ice – compression rate dependence of structural phase transitions

PI Amy Jenei, LLNL and Hanns Peter Liermann, DESY

Diamond Precipitation from Hydrocarbons at Icy Planet Interior Conditions

Imaging cylindrical compression of thin metal wires at fusion relevant conditions

Driven by ReLaX

Wire implosion driven by return current heating

25 μm Cu wire by a 3 J, 30 fs laser pulse

Irradiation of plain thin Cu wire generates a converging cylindrical shock Shock travels towards the wire axis, reaches at the convergence point a compression factor of 9 and P > 800 Mbar (simulations)

Outline

Introduction

Free-electron laser basics

X-ray FEL facilities

– break –

LACTE Ultra fast processes in chemistry and materials

Biological and soft matter

Extreme states of matter

Future

From 'first's' to applications

- X-ray FELs are operational since \sim 15 yrs.
- Many new observations for the interaction of intense (energy & ultrashort) x-ray pulses with matter have been made. Large number of highly visible papers published.
- A next step will be to develop applications which can be used by a broader science community. Potential candidates are:
	- **Structure and dynamics of proteins and similar bio-molecules**
	- **Chemical reaction dynamics : Intermediates & pathways**
	- **Materials science: visualization of irreversible, stochastic, rare, processes**
- FEL experiments are complex \rightarrow still small community, how can we make experiments simpler
- One can expect still lot of new results and new methods to come out of the (still young) FEL research

Most important science drivers

- Capability to measure ultrafast dynamics will allow to determine the response of photo-active catalysts to light excitation \rightarrow develop new compounds/materials for solar energy conversion
- Capability to determine atomic structures of bio and biochemical objects will allow to better understand their function \rightarrow develop new drugs and disease treatments
- Capability to observe new and yet undiscovered states of matter and their structural properties will allow to better understand fundamental physical properties of matter and to detect new materials properties \rightarrow develop new materials and processes
	- Possibility to observe non-linear x-ray processes will allow to develop new x-ray spectroscopy methods \rightarrow enable new methods to study excited matter

Summary

- X-ray FELs are new research infrastructures providing research opportunities complementary to wellestablished SR sources.
	- **Femtosecond time resolution**
	- **High pulse energies enabling single shot experiments and non-linear x-ray scattering**
	- **High coherence facilitating imaging and correlation spectroscopy experiments**
- Since 2017 5 hard x-ray facilities are operational. This will broaden the experiment and user base and will provide better access and research opportunities.
- Many applications so far concern basic science, many are exploratory. With a better under-standing of what is possible using FELs and an increase in available beam-time an expansion of scientific applications is expected.
- The field is still very young and dynamic \rightarrow new developments are very frequent: Stay tuned !

Additional slides

FEL parameters

FEL process is critically sensitive to electron parameters

FELs vs. storage rings

Storage rings

- Electron bunches are circulated
- Stable operation conditions
- Many science instruments, often dedicated to specific methods or science applications
- Large number of exp.s and users per year
- Average spectral brightness is key property
- Specialization on low/medium/high energy facilities with resp. spectral coverage
- ~50 yrs development

FELs

- Normally electron bunch is used only once
- Single path means instable operation conditions
- Few science instruments, often designed for multi-purpose applications
- Typ. only many 10s of experiments per year
- Peak spectral brightness is key property
- Specialization on low/medium/high energy facilities with resp. spectral coverage
- High repetition and multi-beamline facilities will broaden access and average flux properties
- ~10 yrs development

Comparison of SR and FEL x-ray properties

Comparison of SR and FEL experiments

