Transition from ISPyB to ICAT at ESRF (II)

Alex DE MARIA
On behalf of
Software Group and Structural Biology group
ELETTRA 20/11/2024

Context

- March 2023 at Soleil
 - "A proposal for a Next Generation of ISPyB Software"
 - How a generic metadata catalog could replace ISPyB
 - Requested further evaluation and testing of a solution based on ICAT
- November 2023 at ALBA
 - o <u>"MX on ICAT"</u>
 - Evaluation was satisfactory
 - Further development and deployment in real conditions
- May 2024 at MAXIV
 - <u>"Transition from ISPyB to ICAT at ESRF"</u>
 - Developments on the UI and Backend
 - Shipment and sample tracking
 - Multi-sweep
 - Integration with MXCuBE
 - Plan for deployment in a few beamlines

Missing bits and future plans (MAXIV meeting)

- Data catalog/LIMS
 - Add Phasing and SAD (ongoing)
 - Add missing metadata
 - Test with friendly users

MXCuBE

- ICAT sample synchronization (ongoing)
- Do some abstraction that allows to send data to both ISPyB and ICAT (ongoing)

Plans

- Roll out with full functionality on the beamlines by September
- Use both ISPyB/ICAT in parallel for the time being
- Help other partners willing to adopt this software solution

Highlights

DRAC: Data Repository for Advancing open sCience

Implements the FAIR principles

- Findable
- Persistent identifiers
- Data is preserved (interface to tape)
- etc...

Composed by:

- Catalog (ICAT)
- Sample Tracking
- E-Logbook
- Reprocessing
- Viewers. E.g: H5Viewer
- Technique Specific Viewers
 - \circ Mx
 - BioSAXS
 - CryoEM/ET
 - Tomography
 - o Etc..

Logo thanks to Marie SPITONI, Ludovic BROCHE

Software renamed

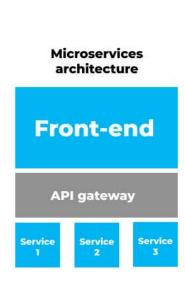
DRAC: Data Repository for Advancing open sCience

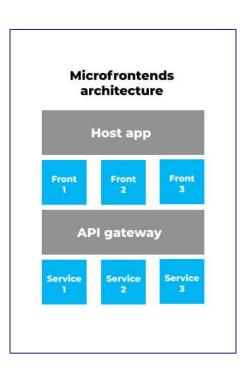
Credits:

Marie SPITONI Ludovic BROCHE

Data Portal v2 launched

New version:


https://data.esrf.fr


- Upgraded version of the data portal
 - Launched October 2024
- All-in-one solution
 - Single entry point for users (MX and non-MX)
 - Data visualization
 - FAIR (public + private data)
 - Search
 - DOI
 - Logbook
 - Sample Tracking
 - Interface with TAPE (restoration + Globus)
 - **...**

Microfrontend Architecture

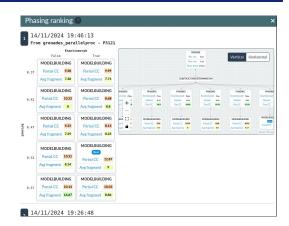
FE/BE architecture Monolithic architecture Monolith

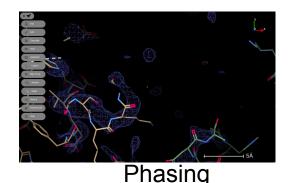
Microfrontend Architecture

https://data.esrf.fr MX BIOSAXS CRYO-EM/ET TOMOGRAPHY https://data.esrf.fr REPROCESSING TOOLS VIEWERS

ICAT + API (https://icatplus.esrf.fr/api-docs)

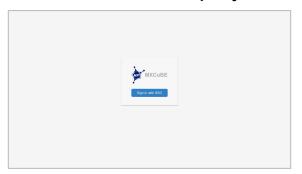
SAMPLE TRACKING
ICAT CATALOG
H5GROVE

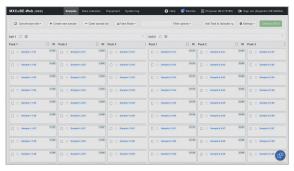

H5GROVE


EWOKS

EWOKS

SAD/Phasing

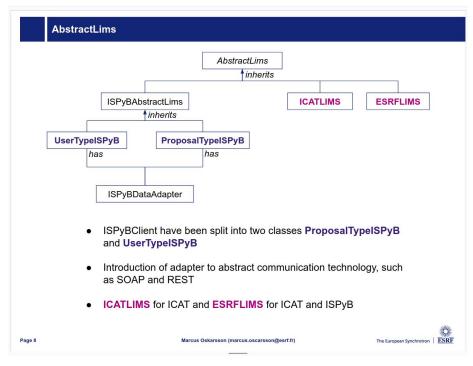

- Deployed on all beamlines
 - Triggered when anomalous signal detected
 - Runs SHELXC+D+E
- Use case for extending features with 0-backend development
- Moorhen as visualization tool
 - Almost full coot functionality
 - Use of MTZ instead of maps



SSO, user authentication and sessions selected from DRAC

Deployed and tested on ID30A-1 since September 2024

User authentication with **SSO**


Session selection from **DRAC**

Sample tracking compatible with both ISPyB and DRAC

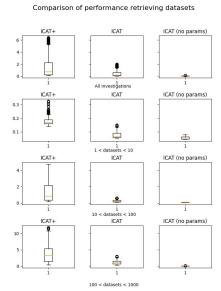
- MXCuBE is backwards compatible
 - Proposal authentication
 - Session selection via ISPyB
- Results are pushed to ISPyB and DRAC

Lowlights

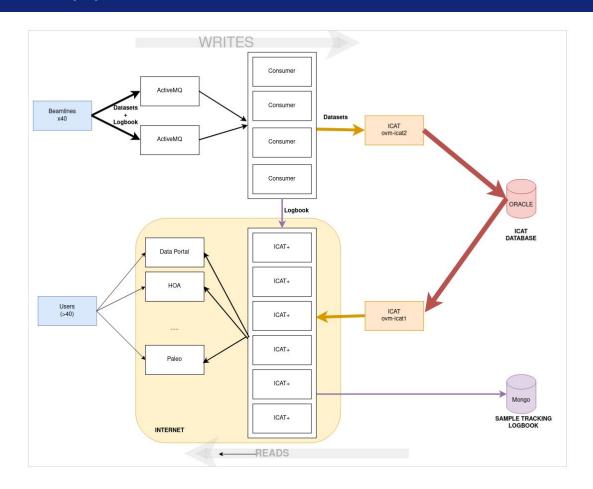
MXCuBE integration with DRAC

- Extract interface
- Implement non-abstract classes
 - UserTypeISPyB
 - ProposalTypeISPyB
 - ICAT
 - o ESRF
- Better (hopefully) management of:
 - Session
 - Proposals
 - Users

Credits: Marcus Oscarsoon

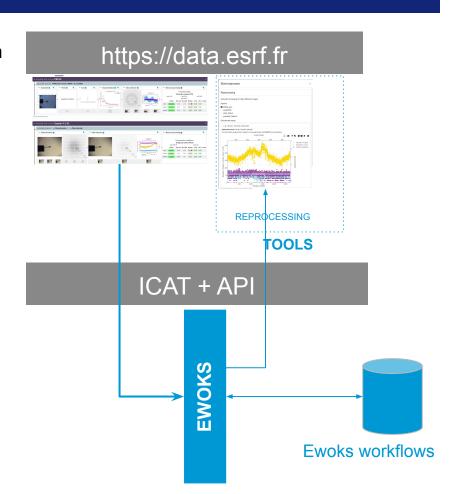

Performance

- Lot of time invested in getting better performance
 - Queries
 - User interface
 - Smart Lazy loading
 - MXCuBE -> DRAC communication
 - Removed strong dependency
 - Speed up data acquisition
 - Infrastructure
 - 0

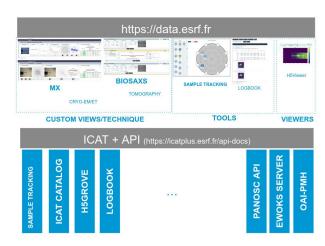

Performance

Queries

- Huge impact in speed for the whole synchrotron
- Public/private data makes user's role
 (user, staff, manager) to have a considerable impact



Performance (III)


Ewoks

- Automatic rendering based on workflow definition
- Filtering workflows by:
 - Technique
 - Dataset type
 - Beamline
- Still work in progress
 - o Example MX
 - Example BioSAXS

Packaging

- DRAC converted into docker compose stack
 - https://gitlab.esrf.fr/icat/drac
- Configuration done with .env
- Used for integration tests
- Help adoption of the software

Run your own instance easily:

Docker compose –profile database sample_tracking mx biosaxs h5viewer up

Future plans

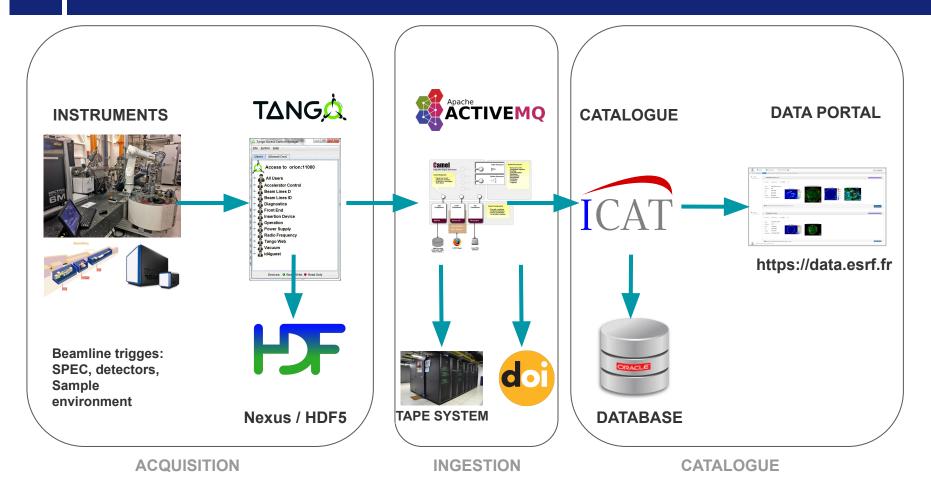
- Update the MXCuBE configuration to fully enable ICAT on all beamlines by the January start-up
 - User authentication with SSO
- Bug fixing and user support will occupy much of our time in the coming months
- Improving dewar tracking
 - Labels/barcode scanning
 - Simplified workflow
- Making restored open data work seamlessly with Globus
- Linking samples to AlphaFold models
- Linking DOIs to PDB entries

Future plans

- Reprocessing
 - Single datasets
 - Prepopulate parameters based on
 - initial parameters used by the pipeline OR
 - final parameters
 - X beam/ybeam
 - Detector distance
 - Mosaicity
 - Multiple datasets
 - Merge datasets across samples and maybe sessions
 - Simple merge
 - HCA
 - GA
- Continue providing support or assistance in any matter related to ISPyB, py-ISPyB, or DRAC

Conclusions

- Development is progressing smoothly, and the feedback has been positive
- So far, the developments have only been made available to a small group of users. DRAC
 is expected to be publicized for all MX users soon, reaching an important milestone.
- In terms of functionality, DRAC has surpassed ISPyB for MX, but there is still much work to be done. These developments should be understood in the context of a project start rather than a final product.
- New lines of work are opening up, such as extending information related to the samples, reprocessing, or the automated use of the e-logbook.


Acknowledges

- DRAC
 - Mael Gaonach
 - Marjolaine Bodin
- Workflows and automation
 - Olof Svensson
- Scientists
 - Didier Nurizzo
 - Estelle Mossou
 - Matthew Bowler
 - Romain Talon
- MXCuBE
 - Marcus Oscarsson
 - Antonia Beteva

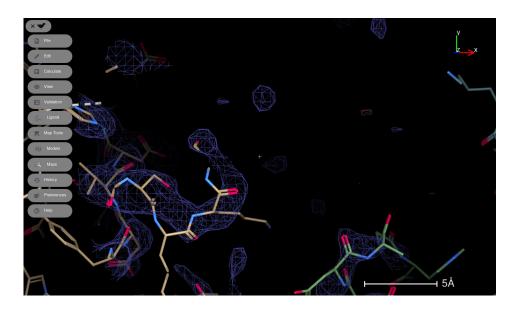
- Steering
 - Max Nanao
 - Andy Gotz
 - Vicente Rey

Backup slides

Architecture and services

SAD/Phasing visualization with Moorhen

Moorhen is a web browser molecular graphics program based on the Coot desktop program.


<u>CCP4</u> and Coot into Webassembly + REACT programs, <u>Coot</u> and their dependencies to **Web Assembly** and then combining with a **React user interface**.

Repository:

https://github.com/moorhen-coot/Moorhen

Two major benefits:

- Almost full coot functionality
- Use of MTZ instead of maps

Moorhen