

MXLIMS Working on a prototype

Global Phasing

MXCuBE/ISPyB Meeting, Trieste, November 2024

Global Phasing Ltd 2024

Introduction

Where we are and how we got there

Global Phasing Ltd 2024

Global Phasing Limited MXLIMS starting point (ALBA, end 2023)

- The ISPyB collaboration was disintegrating
 - There was never that much shared in ISPyB except for the database core
 - Moves towards sharing technology and back ends (PyISPyB) were not panning out, and major sites were looking at their own alternatives
- There was a need for supporting multiple LIMS systems
 - E.g. MXCuBE now also included non-ISPyB participants
- Various unmet needs:
 - Support for multi-sweep experiments was stymied by the rigidity of the ISPyB system
 - A lack of uniform, well-defined access at different synchrotrons for sample shipping and fetching home results.

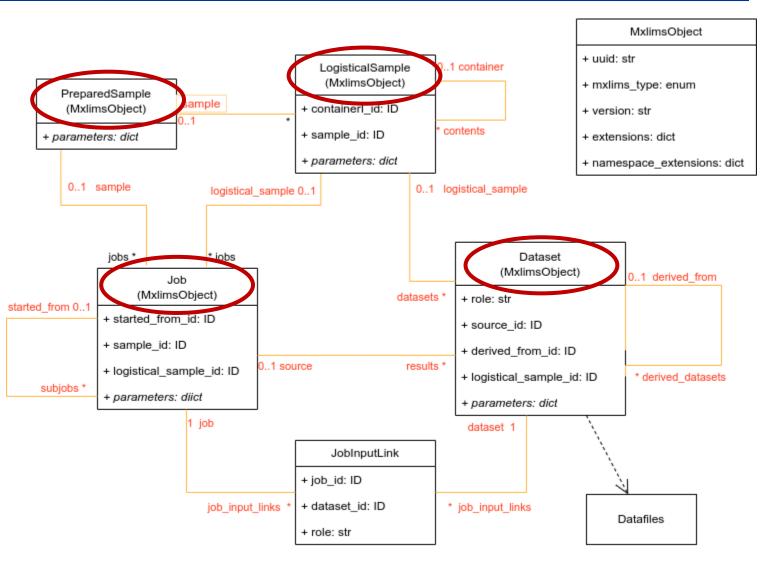
- A precise, documented data model for crystallography scientific content
- Acceptance as a shared API for the ISPyB collaboration
 - Replacing the SQL tables as the central point of the collaboration
 - Development by merging already existing data models
- Harmonisation with internal data models for LIMS systems
 particularly the new and exciting developments at the ESRF

- Scientific API for communication with LIMS and beamlines
 - Message specification and data model
 - Usable across multiple Synchrotrons, beamlines and LIMS systems
 - Detailed and flexible enough to handle all traffic
 - Extensible to allow for additional site- and program- specific data
 - Each site and program gets its own namespace to define its own extension schemas
- Scope: MX and related techniques
 - Extension to SSX contemplated

- Multiple messages defined as JSON schemas
- Simple core structure, to allow storage in Mongo-DB or data-catalogue type systems
 - Few core types, with most data as variable metadata / parameters
 - Parameters in JSON schemas that are specific to one kind of data; core model can be applied to multiple techniques
 - JSON Schemas can be nested
- No direct application to LIMS system implementation
 - MXLIMS defines data and the structure and level of complexity required
 - Data transfer to LIMS (or beamline control) systems via converters
 - MXLIMS does not limit implementations or program internal data models

- MXLIMS can be found at <u>https://github.com/rhfogh/mxlims_data_model</u>
- Developed through working group meetings, with most detailed modeling work done by Ed Daniel and RH Fogh
- Main sources of inspiration:
 - mmCIF, IceBear data model, ICAT, MXCuBE queue model with workflows, autoPROC multisweep data processing, working group discussions on use cases for SSX and complex samples.

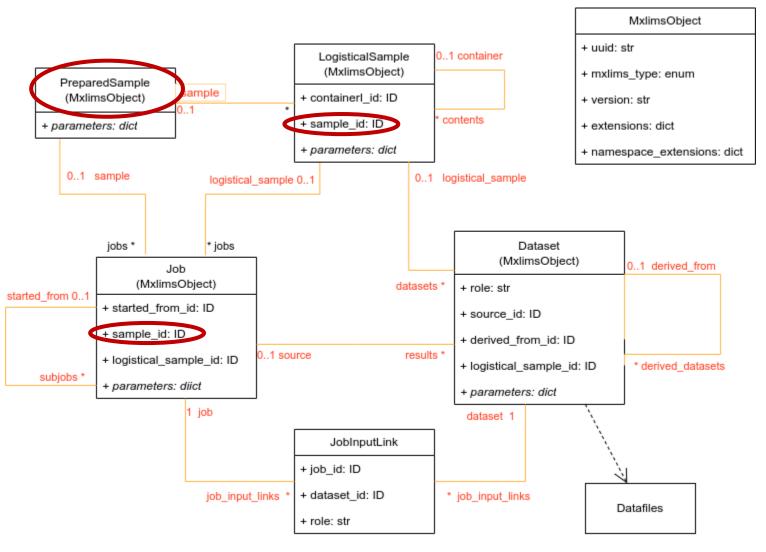
Model core


The basic structure that the specific Metadata fit into

Core model

Four core object types with links between them determined by foreign keys. Together they support provenance tracking.

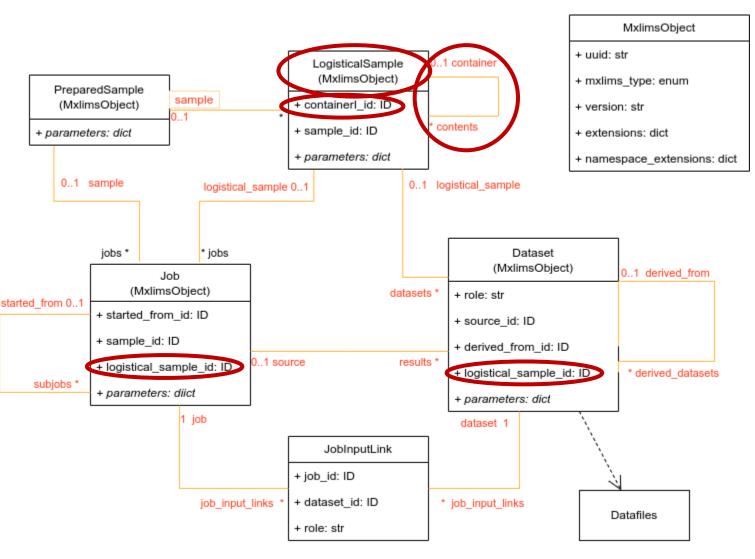
Object *mxlims_type* (e.g. CollectionSweep, ReflectionSet) determines the actual schema, with the allowed *parameters* and types of linked-to objects.


The version allows for schema changes, and the *extensions* give room for site-specific additions

PreparedSample type

Global Phasing Limited

Describes the sample preparation, (crystal, well, or SSX slurry), with macromolecule, other molecules, expected crystal spacegroup and characteristics, and lot identifiers.

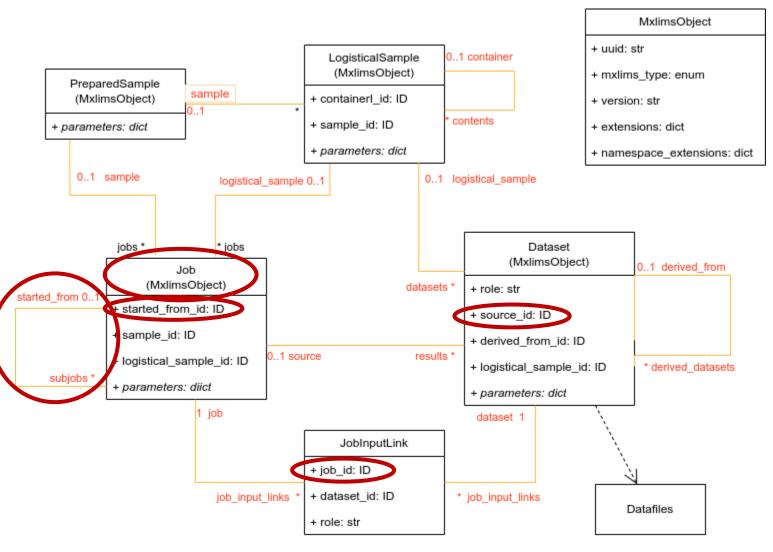


Core model - Logistical_sample

LogisticalSample type

Global Phasing Limited

A sample that is mounted for an experiment (Pin, grid, slurry flow), a (nested) container containing other samples, or a crystal or location where data are measured. Could be a Shipment, Plate, Dewar, Grid, Puck, Crystal, Location, ..., each of which would have its own subtype schema


Core model - Job

Job type A physical experiment

or calculation that produces Datasets.

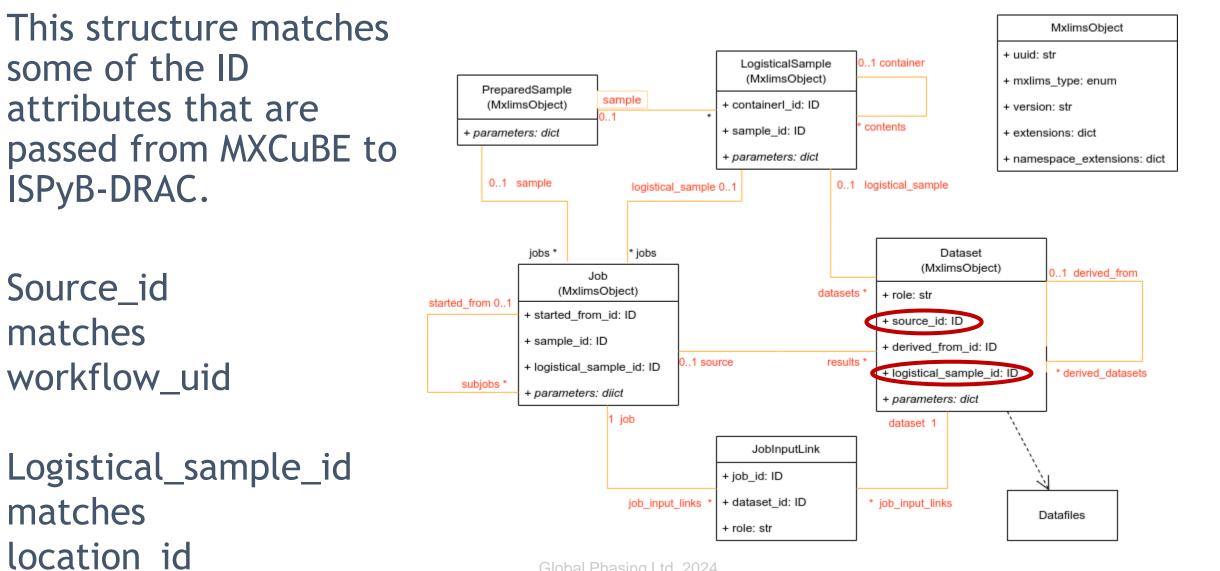
Jobs can start other subjobs, allowing a workflow job to start e.g. Xray-centring jobs or processing jobs.

Job input is handled by names many-to-many links defined in type schemas, using the JobInputLink table

results and processing

input (with files)

Core model - Dataset


Datafiles

Dataset type MxlimsObject + uuid: str 0..1 container LogisticalSample A cohesive set of data, (MxlimsObject) + mxlims_type: enum PreparedSample sample treated as a unit. (MxlimsObject) + containerl_id: ID + version: str contents + sample_id: ID + extensions: dict + parameters: dict Datasets are created by + parameters: dict + namespace_extensions: dict source jobs, or can be 0..1 sample 0..1 logistical_sample logistical_sample 0..1 derived from other Datasets, e.g. when jobs * ' jobs Dataset (MxlimsObject) 0..1 derived_from Job removing empty images (MxlimsObject) datasets + role: str started_from 0..1 + started_from_id: ID from an image set. + source_id: ID + sample_id: ID + derived from id: ID 0..1 source results The same schemas are + logistical_sample_id: ID + logistical_sample_id: ID * derived_datasets subjobs * + parameters: diict used for diffraction plans, + parameters: dict job dataset 1 parameter templates, or JobInputLink acquisition queue input + job_id: ID (without files) and for + dataset id: ID job input links * job_input_links

+ role: str

Core model - ESRF matches

Global Phasing Limited

Implementations and prototypes

JSON schemas and prototype applications New developments since last meeting

- The model has been coded in Pydantic
- JSON Schemas are exported from Pydantic
- Schema documentation made with json-schema-for-humans
- Data load/save (to Python) comes with Pydantic
- The result is checked in to <u>https://github.com/rhfogh/mxlims_data_model/tree/rhfogh_</u> <u>develop</u> (no pull request yet)

- An MXLIMS exporter for GPhL workflows and for single-sweep data collection has been built and tested
 - Support for complete MXLIMS MX model, including wavelengthinterleaved MAD workflow experiments
 - The exporters works from within QueueEntries, so are not confined within GPhL code
 - Simple to code, once you have the Pydantic model.
- Clemens Vonrhein added JavaScript and html to build a display of the result.
 - All in the last couple of weeks

JSON Schema - LogisticalSample

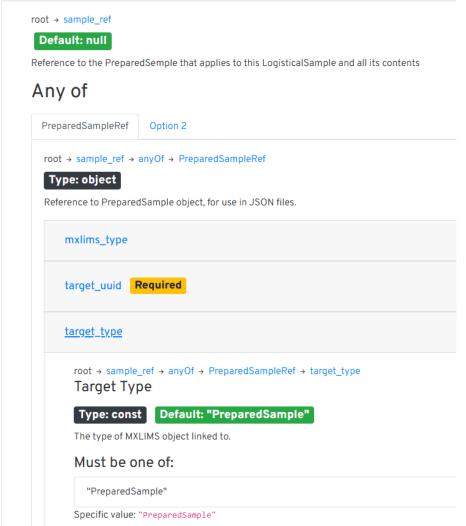
JSON Schema documentation, generated from the schema using json-schema-for-humans

The LogisticalSample class is the base class - the specific classes for Dewars, crystals, etc. have been modelled separately by Ed Daniel, but not yet merged with this part of the model

Type: object

Base class for MXLIMS Logistical Samples

describing Sample containers and locations (from Dewars and Plates to drops, pins and crystals)


mxlims_type
version
uuid
extensions
namespace_extensions
sample_ref
container_ref
contents
job_refs
dataset_refs

The sample_ref field shows the way

cross-links between objects are stored.

The PreparedSampleRef fields mxlims_type and target_type have fixed values - only the target_uuid varies.

sample_ref

<u>Schema documentation</u> with one field expanded.

Global Phasing Limited

JSON Schema - LogisticalSample detail

Experiment record

Interleaved MAD experiment, mock workflow acquisition with simulation of individual images Workflow produced nine sweeps, including characterisation.

Centrings are not recorded.

MXExperiment_4k4k.json

mxlims_type version uuid ▶ sample ▶ logistical_sample ▼ results	MXExperiment 0.2.4 bd3c2780-c126-4320-b7fd-21f25784a9c1
 0 1 2 3 4 5 6 7 8 	
start_time end_time expected_resolution measured_flux	2024-11-12T20:18:23.230882 2024-11-12T20:26:11.941338 1.033 229906068483.64087

Example part 2 - CollectionSweep

<u>CollectionSweep</u> with parameters

▼ results

► 0 ▼ 1

▶ 2

The connection to the source job is stored as a reference record

12 4		
mxlims_type version		CollectionSweep 0.2.4
version uuid		
		7d2eba16-9ef1-4fc8-a112-bae1f718093c
▼ source_ref		MxlimsObjectRef
	mxlims_type target_uuid	bd3c2780-c126-4320-b7fd-21f25784a9c1
	target_type	MXExperiment
role	larger_type	Result
	unte met	Result
 logistical_san exposure_time 	ipie_rei	0.04
image width		0.2
overlap		0.2
number_triggers		ů 0
number_images		ů 0
energy		12.4
transmission		100
resolution		3.5489723032023557
detector_roi_mo	ode	0
▶ beam_position		
► beam_size		
beam_shape		rectangular
axis_positions	s start	
axis positions		
scan_axis	-	omega
▶ scans		
file_type		cbf
prefix		4k4k_G1B1
filename_templa	ate	4k4k_G1B1_6_%05d.cbf
path		/alt/rhfogh/calc/mxcube_data/visitor/idtest0/eh1/20241112/RAW_DATA/4k4k_001/main

Example part 3 - sweeps and scans

The sweep is a range of images with start and end positions.

It is divided into scans, that may be acquired interleaved (as here) or out of order.

A sweep matches an MXExpress orientation_id

beam_size			
eam_shape		rectangular	
axis_positions	_start		
	phi		6.83913984768024
	kappa		78.8531199888533
	kappa_phi		69.3149475722358
	phiy		0.99787
	sampx		0.04147
	sampy		-1.0451
	omega		6.83913984768024
	detector_distance		398.76
axis_positions	_end		
	omega	186.83913984768026	
can_axis		omega	
scans			
	▼ 0		
		scan_position_start	6.83913984768024
		first_image_number	1
		number_images	300
		ordinal	5
	▼ 1		
		scan_position_start	66.83913984768024
		first_image_number	301
		number_images	300
		ordinal	7
	▼ 2		
		scan_position_start	126.83913984768024
		first_image_number	601
		number_images	300
		ordinal	9
le_type		cbf	

- Clemens Vonrhein has built an exporter that extracts Table1 data from mmCIF to MXLIMS.
- With additional Javascript and html this gives a nice viewable web page
- This information is available for *all* PDB entries at https://staraniso.globalphasing.org/table1/

Table1 for 9CGQ

Data quality metrics extracted from 9cqg.cif.gz by aB_cif2table1 from BUSTER (Global Phasing Ltd.).

Raw JSON data

Table 1 generated from MXLIMS-JSON (via JavaScript):

	Overall	InnerShell	OuterShell
Low resolution limit [Å]	116.500	6.992	2.709
High resolution limit [Å]	2.474	5.559	2.474
R(merge)	0.0852	0.0538	0.7860
R(meas)	0.1056	0.0676	0.9875
R(pim)	0.0614	0.0402	0.5899
CC(1/2)	0.995	0.992	0.455
CC(ano)	-0.099	-	-
DANO /σ(DANO)	0.791	-	-
Completeness (spherical) [%]	69.4	-	-
Completeness (ellipsoidal) [%]	90.9	-	-
Multiplicity	2.6	2.4	2.6
Anomalous completeness (spherical) [%]	62.1	-	-
Anomalous completeness (ellipsoidal) [%]	81.4	-	-
Anomalous multiplicity	1.4	-	-

Table1 view for a recent PDB entry, generated via extracted MXLIMS JSON data.

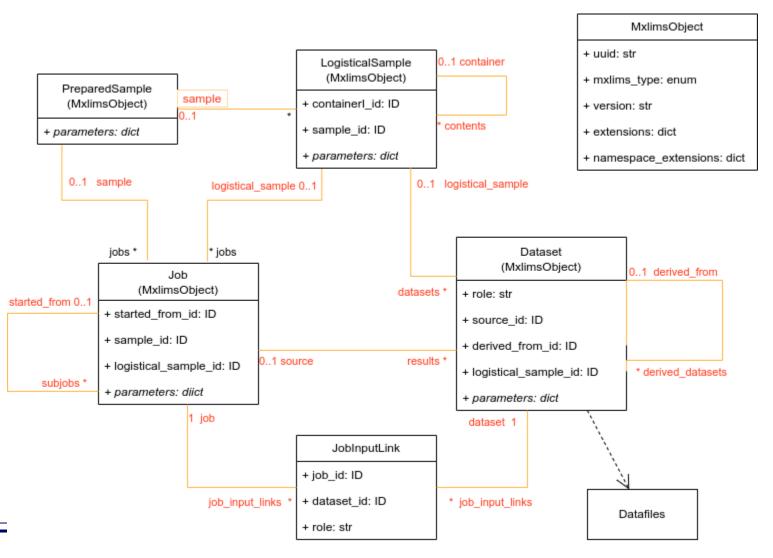
The entire system required less than two weeks' work to produce.

Global Phasing Limited 9CGQ - detail

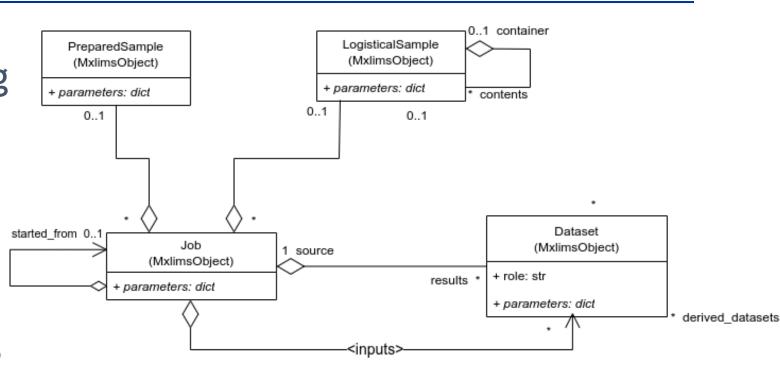
Binned data generated from MXLIMS-JSON (via JavaScript):

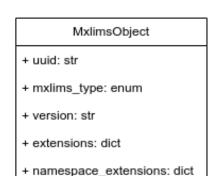
	Resolution [Å]	R(merge)	R(meas)	R(pim)	CC(1/2)	Multiplicity
	116.500 - 6.992	0.0383	0.0474	0.0273	0.996	2.8
	6.992 - 5.559	0.0538	0.0676	0.0402	0.992	2.4
	5.559 - 4.867	0.0564	0.0707	0.0419	0.991	2.4
	4.867 - 4.432	0.0563	0.0701	0.0411	0.991	2.6
	4.432 - 4.128	0.0643	0.0796	0.0462	0.991	2.7
	4.128 - 3.902	0.0776	0.0965	0.0563	0.988	2.7
	3.902 - 3.724	0.0956	0.1184	0.0686	0.986	2.7
	3.724 - 3.553	0.1239	0.1529	0.0881	0.980	2.7
	3.553 - 3.436	0.1547	0.1902	0.1089	0.967	2.8
	3.436 - 3.334	0.1951	0.2400	0.1375	0.954	2.8
	3.334 - 3.240	0.2525	0.3133	0.1824	0.913	2.5
	3.240 - 3.157	0.3137	0.3892	0.2266	0.884	2.5
	3.157 - 3.083	0.4032	0.4979	0.2874	0.811	2.6
	3.083 - 3.014	0.4503	0.5594	0.3262	0.766	2.5
	3.014 - 2.950	0.5110	0.6340	0.3690	0.728	2.5
	2.950 - 2.892	0.6407	0.7885	0.4524	0.640	2.7
	2.892 - 2.839	0.6866	0.8450	0.4850	0.602	2.7
	2.839 - 2.783	0.7059	0.8660	0.4942	0.569	2.8
	2.783 - 2.709	0.7203	0.8926	0.5198	0.535	2.7
Global Phasing	2.709 - 2.474	0.7860	0.9875	0.5899	0.455	2.6

Resolution bin data for 9CGQm extracted from mmCIF via MXLIMS.


A technical issue

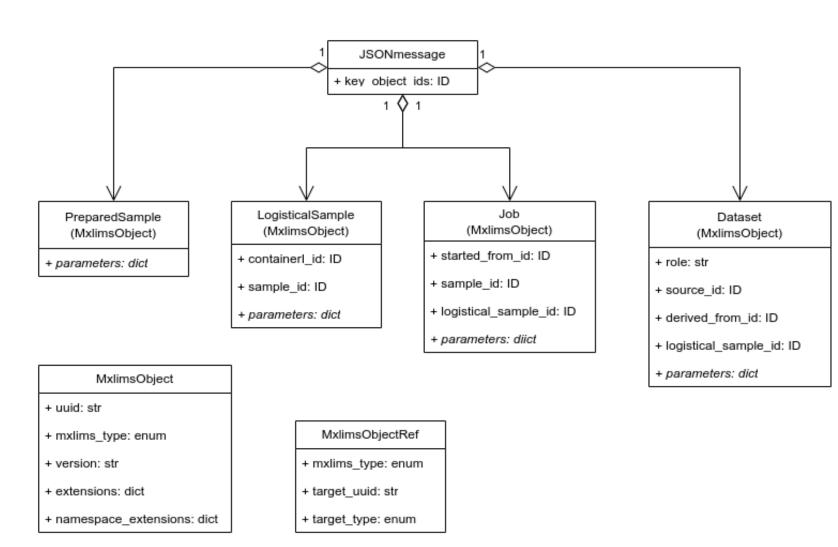
How do you best implement the MXLIMS model either in code or as JSON?


Core model - again


- The core model describes a *network* of objects, with twoway links and loops. This is necessary to store provenance properly. In a database this can be navigated as desired.
- JSON is limited to a *tree* structure; how should you map the model onto JSON?

One-Job JSON Schema

- A JSON tree rooted in a single Job, with everything else stored as JSON content.
- Crosslinks are stored as MxlimsObjectRef records
- For a processing job processing data from a single experiment job, the 'started_from' link allows you to fit all relevant data into a single schema (just).


MxlimsObjectRef + mxlims_type: enum + target_uuid: str + target_type: enum

Object network JSON schema

- A (non-MXLIMS) JSON root with separate lists of Jobs, Datasets, PreparedSamples, and LogisticalSamples.
- All links are handled with MxlimsObjectRefs
- This can handle all object combinations, but is less intuitive and requires software to reconnect all the links.

JSON message

- What kinds of JSON schemas do people want to work with? One obvious addition would be a 'shipment' schema with a single LogisticalSample as root and everything else as content.
- We could have multiple schemas with different combinations of the same building blocks, but what are the use cases?
- How would one implement this internally in e.g. MXCuBE (using e.g. Pydantic? Something more complex?) if the data are sometimes too complex for simple trees?

Thanks to the many, many people

who have participated in the MXLIMS working group,

or contributed information, discussions and feedback.