VMXi – Fully automated room-temperature MX

James Sandy – Senior Beamline Scientist 🗧 diamond

VMXi – Centrepiece of Diamond MX

Automated MX beamlines

Bowler MW, Nurizzo D et al. (2015). MASSIF-1:A beamline dedicated to the fully automatic characterisation and data collection from crystals of biological macromolecules, J. Synchrotron Rad. 22, 1540-1547.

R. Bingel-Erlenmeyer, V. Olieric, et al. (2011). SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling *in Situ* X-ray Diffraction Screening, <u>Cryst. Growth Des. 11, 4, 916–923</u>.

MASSIF-1 - ESRF

AMX – NSLS-II

UDC at Diamond now extremely common

Fully-automated room temperature MX

distant.	 	
1/1=1=15		三1
		EN.
1===		REIN
1		
		==1
Second Second Second	_	Contractory of the local division in which the local division in t

Sanchez-Weatherby J, Sandy, J, et al. (2019).VMXi: a fully automated, fully remote, high-flux *in situ* macromolecular crystallography beamline. J Synchrotron Radiation 26(1):291-301

H. Mikolajek, J. Sanchez-Weatherby, et al. (2023). Protein-to-structure pipeline for ambient-temperature *in situ* crystallography at VMXi. <u>IUCr 10: 420-429</u>

SynchWebVMXi Interface

SynchWeb

- Registration/ management of experimental plates
- Allows rapid analysis of crystallisation experiment
- Manual/Auto scoring
- Simple selection of point/region(s)
- Data collection and analysis of results

Fisher, S. J., Levik, K. et al. (2015). SynchWeb: A Modern Interface For ISPyB. J. Appl. Cryst. 48, 927-932

CHiMP – Crystal hits in my plates

- Based on MARCO algorithm
- Finds "objects" for users
- Up to 100 objects per drop marked
- Soon to be replaced by Chimp-Chomp – multithreaded update
- Developing new uses for this Al algorithm – ECHO, size of object etc

King, O.N.F., Levik, K.E. et al. (2024) CHiMP: deeplearning tools trained on protein crystallization micrographs to enable automation of experiments. Acta Cryst. D80: 744-764

Bruno AE, Charbonneau P, et al. (2018). Classification of crystallization outcomes using deep convolutional neural networks. <u>PLOS ONE 13(6): e0198883</u>

CrystalMatch

Message	Timestamp	Duration	Alignment info	le	10
1 Matching Started	2024-11-14 10:52:48.346	0	Alignment score: 32.849610726007036	1.25 - W	Λ
2 FFT calculation finished	2024-11-14 10:52:53.993	5	Status: 2, Good Alignment	n 1.00 -	
3 Alignment Complete	2024-11-14 10:52:58.194	9	Scala: 0.6340	LH 0.50 -	
4 Crystal Match Complete	2024-11-14 10:52:58.198	9	Transform coordinator: vv. 04.0000. vv. 157.0000	0.25 -	
			Transform coordinates: x: -84.0000, y: 157.0000		2 4 6 8 10 12 14 16 18 20 22 24 26 28

Best FFT: /dls/mx/data/nr27313/nr27313-389/VMXi-AB7324/well_102/ zstack 20241114 105218/stack/stack image 25.tif

Overlap

Beamline Processed: /dls/mx/data/nr27313/nr27313-389/VMXI-AB7324/ well 102/zstack 20241114 105218/processed.tif

Formulatrix: /dls/mx/data/nr27313/nr27313-389/imaging/ 315839/151391/33692794.jpg

- Calculates which images should be used to generate composite image
- Matches composite images from Formulatrix and beamline together to enable sample centring
 - Outputs a series of X,Y,Z coordinates for each object selected by user

Differences

Sandy, J., Mikolajek, H., et al. (2024). Crystallization and *In Situ* Room Temperature Data Collection Using the Crystallization Facility at Harwell and Beamline VMXi, Diamond Light Source. J.Vis. Exp. (205), e65964.

Example VMXi data

Sample: B12d1_	Flux: 9.93e+11
Ω Start: -30.0°	Ω Osc: 0.10°
Ω Overlap: 0°	No. Images: 600
Resolution: 1.95Å	Wavelength: 0.7749Å
Exposure: 0.0018s	Transmission: 5.00%
Beamsize: 10x10µm	Type: SAD

Multiple crystals selected

Туре	Resolution	Resolution I/sig(I)=2	Spacegroup	Mn <l sig(l)=""></l>	Rmeas Inner	Rmeas Outer	Completeness
xia2 dials	70.44 - 1.76	1.90	P 2 21 2	12.6	0.037	1.249	84.2
fast_dp	28.23 - 1.91	0.00	P 2 2 2	8.6	0.026	0.864	89.0
autoPROC	70.44 - 1.83	2.17	P 2 2 2	4.6	0.038	1.263	86.2
xia2 3dii	70.46 - 1.80	2.02	P 2 2 21	7.0	0.036	1.256	85.2
35x xia2.multiplex	70.44 - 1.69	0.00	P 21 21 21	14.6	0.196	167.079	100.0
autoPROC+STARANISO	70.44 - 1.80	0.00	P 2 2 2	5.6	0.036	0.630	81.1
4x xia2.multiplex	70.44 - 1.91	0.00	P 21 21 21	11.7	0.097	3.010	100.0

Each sweep - 60 degrees data in ~1 second

Example VMXi data

Sample: B12d1_	Flux: 9.93e+11
Ω Start: -30.0°	Ω Osc: 0.10°
Ω Overlap: 0°	No. Images: 600
Resolution: 1.95Å	Wavelength: 0.7749
Exposure: 0.0018s	Transmission: 5.00%
Beamsize: 10x10µm	Type: SAD

Multiple crystals selected

Туре	Resolution
xia2 dials	70.44 - 1.76
fast_dp	28.23 - 1.91
autoPROC	70.44 - 1.83
xia2 3dii	70.46 - 1.80
35x xia2.multiplex	70.44 - 1.69
autoPROC+STARANISO	70.44 - 1.80
4x xia2.multiplex	70.44 - 1.91

Rmeas Inner	Rmeas Outer	Completeness
0.037	1.249	84.2
0.026	0.864	89.0
0.038	1.263	86.2
0.036	1.256	85.2
0.196	167.079	100.0
0.036	0.630	81.1
0.097	3.010	100.0

Ligand clearly visible in fo-fc maps and was easily built into density – publication pending

Challenging crystals – ugly or tiny!

From thin irregular plate and needle-like objects, clusters of crystals, to tiny crystals, VMXi can deliver structures.

	NCOA7	РНСР	ТТСР
Number of crystals	12	4	4
DWD (MGy)	1.01	1.05	1.37
Resolution range (Å)	46.38-2.36 (2.4-2.36)	56.03-1.88 (1.91-1.88)	35.12-1.75 (1.78-1.75)
Space group	C2	<i>P</i> 6 ₂ 22	C2
Unit-cell parameters			
a, b, c (Å)	100.0, 54.8 44.3	83.5, 83.5, 88.6	81.5, 39.0, 41.5
α, β, γ (°)	90, 119.5, 90	90, 90, 120	90, 97.2, 90
Unique reflections	8049 (420)	15440 (750)	12429 (490)
Multiplicity	13.9 (13.3)	22.3 (15.4)	4.4 (2.8)
Completeness (%)	92.55 (94.1)	100.0 (100.0)	93.9 (74.7)
$\langle I/\sigma(I) \rangle$	5.7 (1.3)	7.9 (0.6)	9.9 (0.9)
Wilson <i>B</i> factor (Å ²)	30.8	19.50	15.38
R _{merge}	0.483 (2.335)	0.459 (5.496)	0.151 (1.171)
R _{p.i.m.}	0.13 (0.654)	0.093 (1.401)	0.076 (0.740)
CC _{1/2}	0.949 (0.261)	0.995 (0.258)	0.990 (0.364)
Reflections used in refinement	t 7958 (775)	15397 (777)	12425 (614)
Rwork	0.196	0.180	0.163
R _{free}	0.259	0.203	0.197
Protein residues	163	135	133
RMS bonds (Å)	0.0090	0.0133	0.0118
RMS angles (°)	1.61	2.31	2.22
Ramachandran favoured (%)	95.7	99.2	100.0
Average B factor (Å ²)	26.8	33.0	25.0

H. Mikolajek, J. Sanchez-Weatherby, et al. (2023). Protein-tostructure pipeline for ambient-temperature *in situ* crystallography at VMXi. <u>IUCr 10: 420-429</u>

Challenging crystals – stuck to plate!

Sample: A7	d2_				Flux: 9.93e+1	1
Ω Start: -30.	.0°				Ω Osc: 0.10°	
Ω Overlap: (D°				No. Images: 6	00
Resolution:	1.95Å				Wavelength: 0).7749Å
Exposure: 0	.0018s				Transmission:	5.00%
Beamsize: 1	0x10µm				Type: SAD	
-30 60	-20	-10	0	10	20	2.0
50 40		de la composition de la comp				Spots Bragg Res 2.5 3.0
30						3.5
20	1.1			1	11	4.0
10	100	200	300	400	500	4.5

data	Resolution	Resolution I/sig(I)=2	Spacegroup	Mn <l sig(l)=""></l>	Rmeas Inner	Rmeas Outer	Completeness	
fast_dp	29.54 - 2.74	0.00	1222	10.5	0.024	0.929	53.2	
xia2 dials	68.88 - 2.38	2.66	1222	9.7	0.044	2.295	54.0	
xia2 3dii	74.85 - 2.44	2.76	1222	7.0	0.043	2.114	53.7	
autoPROC	68.86 - 2.51	2.71	1222	6.9	0.046	2.291	53.4	
2x xia2.multiplex	68.88 - 2.31	0.00	1222	9.6	0.052	2.222	94.0	-
12x xia2.multiplex	74.86 - 2.17	0.00	1222	11.6	0.075	15.069	100.0	diamo
autoPROC+STARANISO	74.83 - 2.22	0.00	1222	7.9	0.045	1.030	56.9	

First membrane protein structure

6 x 20° oscillation (<2.2 secs exposure) - 2Å structure

Ground state structure of Archaerhodopsin-3 – from MPL group at DLS

Collected data in MiteGen In Situ-1[™] tray and film sandwich on VMXi

20 x 45 µm crystals

Serial data collection

	HEWL (8 drops, PDB entry 8rge)				
Diffraction-weighted dose (kGy)	33				
Resolution range (Å)	55.56-1.88 (1.95-1.88)				
Space group	<i>P</i> 4 ₃ 2 ₁ 2	Sample: A11d2_			
a, b, c (Å)	78.57, 78.57, 37.77				
α, β, γ (°)	90, 90, 90	&; Start: 0.0°			
No. of diffraction patterns merged	9891				
Volume dispensed	1.6 µl [200 nl per drop]	Resolution: 1.95Å			
Total reflections	1117460 (32281)				
Unique reflections	10076 (973)	Wavelength: 0.7749Å			
Multiplicity	110.9 (65.1)				
Completeness (%)	99.27 (99.90)	Exposure: 0.0020s			
Mean I/o(I)	19.1 (1.2)	Exposure: 0.00203			
Wilson <i>B</i> factor (Å ²)	31.36	Tereserie einen 400.000/			
R _{split}	0.083 (1.143)	Transmission: 100.00%			
CC _{1/2}	0.997 (0.398)				
Reflections used in refinement	10002 (972)	Beamsize: 10x10µm			
Rwork	0.1925 (0.2832)				
R _{free}	0.2305 (0.4288)	Boxsize: 10x10µm			
Water molecules	83				

~3 mins / grid <30 mins total time

Thompson, A. J., Sanchez-Weatherby, J., et al. (2024). Efficient in situ screening of and data collection from microcrystals in crystallization plates. Acta Cryst. D80: 279-288

Multiplex

Processes datasets seamlessly and quickly to deliver improved completeness and resolution

Gildea, R. J., Beilsten-Edmands, et al. (2022). xia2.multiplex: a multi-crystal data-analysis pipeline Acta Cryst. D78, 752-769

Auto-processing Pipeline

Sample groups

Taking xia2.multiplex to the next level

Туре	Resolution
1 289x xia2.multiplex	1.51 - 78.89
3 292x xia2.multiplex	1.51 - 78.89

Container: VMXi-AB2171

overall

Container: VMXi-AB2174

	1	2	3	4	5	6	7	8	9	10	11	12
A												
в												
С												
D												
E												
F												
G												
н												

Shell	Observations	Unique	Resolution	Rmeas	l/sig(l)	CC Half
outerShell	94701	913	1.51 - 1.54	-14.456	0.1	0.3
innerShell	1103776	1094	4.10 - 79.00	0.180	252.5	1.0
overall	13894097	19187	1.51 - 78.89	0.938	44.6	1.0

100.0

100.0

100.0

Container: VMXi-AB2173

Container: VMXi-AB2172

Analysis of different chemical conditions, dehydration experiments, fragment/ligand-binding

Human insulin, porcine insulin and bovine insulin differ subtly in their amino acid sequences and readily grow high-quality, cubic, isomorphous crystals

- All three species are distinguishable at room temperature with new algorithms!
- People and pigs mix in the dendrogram before cows consequence of terminal residue position being less well defined at room temperature

Clustering in this manner not particularly easy to separate – try other options

Multiple clusters due to different samples and poor data quality

4D Cosine Angle Clustering

OPTICS is a density-based algorithm that automatically defines clusters with spatial relations (which we have calculated using cosine-angle clustering!)

- Requires no global density parameter (can detect clusters of varying density)
- Does not assume any specific number of clusters
- Can detect noise (does not require every dataset to be a part of a cluster)

Peaks between clusters are used to easily separate samples

Processed data files for each cluster are automatically outputted for users

4D clustering has well-separated cows, pigs and people clusters, and an outlier group of datasets are identified

Summary

- Collection of fully-automated room temperature data in situ works and delivers excellent quality data
- The VMXi beamline can help with many aspects of the crystallisation experiment from initial hits to more advanced studies
- Improvements in data processing are enabling new science

Acknowledgements

Diamond MX Group

Electrical and Mechanical Engineers

Electrical and Mechanical Technicians

PLC and Motions Teams

Controls Team

Olly King - CHiMP

Diamond GDA Team

MX Data Analysis Team

ISPyB Development Team

Diamond Users

VMXi team (2024) – Juan, Amy, Mike, James, Halina and Megan

Want to try VMXi? Contact us – VMXi@diamond.ac.uk

