We present here our recent work on the development of ab initio time-domain methods for studying the contribution of inner molecular orbitals to the HHG spectrum [1] of aligned or non-aligned molecules [2-4]. First, we show how, in the presence of a linearly polarised pulse, the selection rules for harmonic generation can be different depending on the molecular orbital considered: an example...
An object is said to be chiral if it cannot be superimposed on its mirror image by any rotation. The two mirror images of the same chiral molecule are called enantiomers and are often referred to as “left”- and “right”-handed. While the physical properties of the two enantiomers of the same chiral molecule are nearly identical, the geometric property of chirality leads to vastly different...
Since the pioneering work by French scientists in the early 1800s, optical activity and chiral light-matter interactions have been produced via the chirality of light stemming from a degree of ellipticity in its local polarisation state. The mechanism is well understood: the polarisation state can rotate in a left or right-handed fashion and leads to differential interactions with left and...